Pregunta

Esta es una pregunta bastante larga, así que no dudes en hacerlo.

Estamos implementando un emulador para una pieza de hardware que Se está desarrollando al mismo tiempo. La idea es dar a terceros. Una solución de software para probar el software de su cliente y entregar el hardware. Los desarrolladores son un punto de referencia para implementar su firmware.

Las personas que escribieron el protocolo para el hardware usaron una costumbre La versión de SUN XDR se llama INCA_XDR. Es una herramienta para serializar y des-serializar mensajes. Está escrito en C y queremos evitar cualquier código nativo, por lo que estamos analizando los datos del protocolo manualmente.

El protocolo es por naturaleza bastante complejo y los paquetes de datos puede tener muchas estructuras diferentes, pero siempre tiene la misma estructura global:

  

[HEAD] [INTRO] [DATA] [TAIL]

[HEAD] =
    byte sync 0x03
    byte length X       [MSB]       X = length of [HEADER] + [INTRO] + [DATA]
    byte length X       [LSB]       X = length of [HEADER] + [INTRO] + [DATA]
    byte check X        [MSB]       X = crc of [INTRO] [DATA]
    byte check X        [LSB]       X = crc of [INTRO] [DATA]
    byte headercheck X              X = XOR over [SYNC] [LENGTH] [CHECK]

[INTRO]
    byte version 0x03
    byte address X                  X = 0 for point-to-point, 1-254 for specific controller, 255 = broadcast
    byte sequence X                 X = sequence number
    byte group X        [MSB]       X = The category of the message
    byte group X        [LSB]       X = The category of the message
    byte type X         [MSB]       X = The id of the message
    byte type X         [LSB]       X = The id of the message

[DATA] =
    The actuall data for the specified message,
    this format really differs a lot.

    It always starts with a DRCode which is one byte.
    It more or less specifies the general structure of
    the data, but even within the same structure the data
    can mean many different things and have different lenghts.
    (I think this is an artifact of the INCA_XDR tool)

[TAIL] =
    byte 0x0D

Como puede ver, hay una gran cantidad de datos generales, pero esto se debe a que el protocolo debe funcionar tanto con RS232 (punto a multipunto) como con TCP / IP (p2p).

    name        size    value
    drcode      1       1   
    name        8               contains a name that can be used as a file name (only alphanumeric characters allowed)
    timestamp   14              yyyymmddhhmmss  contains timestamp of bitmap library
    size        4               size of bitmap library to be loaded
    options     1               currently no options

O podría tener una estructura completamente diferente:

    name        size    value
    drcode      1       2   
    lastblock   1       0 - 1   1 indicates last block. Firmware can be stored
    blocknumber 2               Indicates block of firmware
    blocksize   2       N       size of block to load
    blockdata   N               data of block of firmware

A veces es solo un código de dominio y no datos adicionales.

Según el grupo y el campo de tipo, el emulador Necesita realizar ciertas acciones. Así que primero miramos a esos Dos campos y en base a eso sabemos qué esperar de los datos. y tener que analizarlo correctamente.

Luego, se deben generar los datos de respuesta, que de nuevo tiene Muchas estructuras de datos diferentes. Algunos mensajes simplemente generan un mensaje ACK o NACK, mientras que otros generan una respuesta real con datos.

Decidimos dividir las cosas en pequeños pedazos.

En primer lugar, está el IDataProcessor.

Las clases que implementan esta interfaz son responsables para validar datos en bruto y generar instancias de la clase Message. No son responsables de la comunicación, simplemente se pasan un byte []

La validación de datos sin procesar significa verificar el encabezado en busca de errores de suma de comprobación, crc y longitud.

El mensaje resultante se pasa a una clase que implementa IMessageProcessor. Incluso si los datos en bruto se consideraron inválidos, porque el IDataProcessor no tiene noción de mensajes de respuesta o cualquier otra cosa, todo lo que hace es validar los datos en bruto.

Para informar al IMessageProcessor sobre los errores, se han agregado algunas propiedades adicionales a la clase de mensajes:

bool nakError = false;
bool tailError = false;
bool crcError = false;
bool headerError = false;
bool lengthError = false;

No están relacionados con el protocolo y solo existen para el IMessageProcessor

El IMessageProcessor es donde se realiza el trabajo real. Debido a todos los diferentes grupos de mensajes y tipos, decidí use F # para implementar la interfaz IMessageProcessor porque la coincidencia de patrones parecía una buena manera de evitar un montón de declaraciones anidadas if / else y castas. (No tengo experiencia previa con F # o incluso con lenguajes funcionales que no sean LINQ y SQL)

El IMessageProcessor analiza los datos y decide qué métodos debe llamar en el controlador IHardware. Puede parecer redundante tener IHardwareController, Pero queremos poder intercambiarlo con una implementación diferente. y no ser forzado a usar F # tampoco. La implementación actual es una ventana de WPF, pero podría ser una ventana de Cocoa # o simplemente una consola, por ejemplo.

El IHardwareController también es responsable de administrar el estado porque los desarrolladores deben poder manipular los parámetros de hardware y los errores a través de la interfaz de usuario.

Entonces, una vez que IMessageProcessor haya llamado a los métodos correctos en IHardwareController, Tiene que generar el mensaje de respuesta. Una vez más ... los datos en estos mensajes de respuesta puede tener muchas estructuras diferentes.

Finalmente, se utiliza un IDataFactory para convertir el Mensaje a datos de protocolo sin procesar Listo para ser enviado a cualquier clase responsable de la comunicación. (Por ejemplo, podría ser necesaria una encapsulación adicional de los datos)

Esto no es nada " duro " sobre escribir este código, pero todos los diferentes Los comandos y las estructuras de datos requieren una gran cantidad de código y hay pocos Cosas que podemos reutilizar. (Al menos por lo que puedo ver ahora, con la esperanza de que alguien pueda demostrar que estoy equivocado)

Esta es la primera vez que uso F #, así que realmente estoy aprendiendo sobre la marcha. El código de abajo está lejos de ser terminado y probablemente parece un lío gigante. Solo implementa un puñado de todos los mensajes en el protocolo. y les puedo decir que hay muchos de ellos. ¡Así que este archivo se va a poner enorme!

Es importante saberlo: el orden de los bytes se invierte a través del cable (razones históricas)

module Arendee.Hardware.MessageProcessors

open System;
open System.Collections
open Arendee.Hardware.Extenders
open Arendee.Hardware.Interfaces
open System.ComponentModel.Composition
open System.Threading
open System.Text

let VPL_NOERROR = (uint16)0
let VPL_CHECKSUM = (uint16)1
let VPL_FRAMELENGTH = (uint16)2
let VPL_OUTOFSEQUENCE = (uint16)3
let VPL_GROUPNOTSUPPORTED = (uint16)4
let VPL_REQUESTNOTSUPPORTED = (uint16)5
let VPL_EXISTS = (uint16)6
let VPL_INVALID = (uint16)7
let VPL_TYPERROR = (uint16)8
let VPL_NOTLOADING = (uint16)9
let VPL_NOTFOUND = (uint16)10
let VPL_OUTOFMEM = (uint16)11
let VPL_INUSE = (uint16)12
let VPL_SIZE = (uint16)13
let VPL_BUSY = (uint16)14
let SYNC_BYTE = (byte)0xE3
let TAIL_BYTE = (byte)0x0D
let MESSAGE_GROUP_VERSION = 3uy
let MESSAGE_GROUP = 701us


[<Export(typeof<IMessageProcessor>)>]
type public StandardMessageProcessor() = class
    let mutable controller : IHardwareController = null               

    interface IMessageProcessor with
        member this.ProcessMessage m : Message = 
            printfn "%A" controller.Status
            controller.Status <- ControllerStatusExtender.DisableBit(controller.Status,ControllerStatus.Nak)

            match m with
            | m when m.LengthError -> this.nakResponse(m,VPL_FRAMELENGTH)
            | m when m.CrcError -> this.nakResponse(m,VPL_CHECKSUM)
            | m when m.HeaderError -> this.nakResponse(m,VPL_CHECKSUM)
            | m -> this.processValidMessage m
            | _ -> null      

        member public x.HardwareController
            with get () = controller
            and set y = controller <- y                 
    end

    member private this.processValidMessage (m : Message) =
        match m.Intro.MessageGroup with
        | 701us -> this.processDefaultGroupMessage(m);
        | _ -> this.nakResponse(m, VPL_GROUPNOTSUPPORTED);

    member private this.processDefaultGroupMessage(m : Message) =
        match m.Intro.MessageType with
        | (1us) -> this.firmwareVersionListResponse(m)                        //ListFirmwareVersions              0
        | (2us) -> this.StartLoadingFirmwareVersion(m)                     //StartLoadingFirmwareVersion       1
        | (3us) -> this.LoadFirmwareVersionBlock(m)                     //LoadFirmwareVersionBlock          2
        | (4us) -> this.nakResponse(m, VPL_FRAMELENGTH)                       //RemoveFirmwareVersion             3
        | (5us) -> this.nakResponse(m, VPL_FRAMELENGTH)                       //ActivateFirmwareVersion           3        
        | (12us) -> this.nakResponse(m,VPL_FRAMELENGTH)                       //StartLoadingBitmapLibrary         2
        | (13us) -> this.nakResponse(m,VPL_FRAMELENGTH)                       //LoadBitmapLibraryBlock            2        
        | (21us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //ListFonts                         0
        | (22us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //LoadFont                          4
        | (23us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //RemoveFont                        3
        | (24us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //SetDefaultFont                    3         
        | (31us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //ListParameterSets                 0
        | (32us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //LoadParameterSets                 4
        | (33us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //RemoveParameterSet                3
        | (34us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //ActivateParameterSet              3
        | (35us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //GetParameterSet                   3        
        | (41us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //StartSelfTest                     0
        | (42us) -> this.returnStatus(m)                                      //GetStatus                         0
        | (43us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //GetStatusDetail                   0
        | (44us) -> this.ResetStatus(m)                     //ResetStatus                       5
        | (45us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //SetDateTime                       6
        | (46us) -> this.nakResponse(m, VPL_FRAMELENGTH)                      //GetDateTime                       0
        | _ -> this.nakResponse(m, VPL_REQUESTNOTSUPPORTED)



    (* The various responses follow *)

    //Generate a NAK response
    member private this.nakResponse (message : Message , error) =
        controller.Status <- controller.Status ||| ControllerStatus.Nak
        let intro = new MessageIntro()
        intro.MessageGroupVersion <- MESSAGE_GROUP_VERSION
        intro.Address <- message.Intro.Address
        intro.SequenceNumber <- this.setHigh(message.Intro.SequenceNumber)
        intro.MessageGroup <- MESSAGE_GROUP
        intro.MessageType <- 130us
        let errorBytes = UShortExtender.ToIntelOrderedByteArray(error)
        let data = Array.zero_create(5)
        let x = this.getStatusBytes
        let y = this.getStatusBytes
        data.[0] <- 7uy
        data.[1..2] <- this.getStatusBytes
        data.[3..4] <- errorBytes      
        let header = this.buildHeader intro data
        let message = new Message()
        message.Header <- header
        message.Intro <- intro
        message.Tail <- TAIL_BYTE
        message.Data <- data
        message   

    //Generate an ACK response
    member private this.ackResponse (message : Message) =   
        let intro = new MessageIntro()
        intro.MessageGroupVersion <- MESSAGE_GROUP_VERSION
        intro.Address <- message.Intro.Address
        intro.SequenceNumber <- this.setHigh(message.Intro.SequenceNumber)
        intro.MessageGroup <- MESSAGE_GROUP
        intro.MessageType <- 129us
        let data = Array.zero_create(3);
        data.[0] <- 0x05uy
        data.[1..2] <- this.getStatusBytes
        let header = this.buildHeader intro data
        message.Header <- header
        message.Intro <- intro
        message.Tail <- TAIL_BYTE
        message.Data <- data
        message        

    //Generate a ReturnFirmwareVersionList
    member private this.firmwareVersionListResponse (message : Message) =
        //Validation
        if message.Data.[0] <> 0x00uy then
           this.nakResponse(message,VPL_INVALID)
        else
            let intro = new MessageIntro()
            intro.MessageGroupVersion <- MESSAGE_GROUP_VERSION
            intro.Address <- message.Intro.Address
            intro.SequenceNumber <- this.setHigh(message.Intro.SequenceNumber)
            intro.MessageGroup <- MESSAGE_GROUP
            intro.MessageType <- 132us    
            let firmwareVersions = controller.ReturnFirmwareVersionList();
            let firmwareVersionBytes = BitConverter.GetBytes((uint16)firmwareVersions.Count) |> Array.rev

            //Create the data
            let data = Array.zero_create(3 + (int)firmwareVersions.Count * 27)
            data.[0] <- 0x09uy                              //drcode
            data.[1..2] <- firmwareVersionBytes             //Number of firmware versions

            let mutable index = 0
            let loops = firmwareVersions.Count - 1
            for i = 0 to loops do
                let nameBytes = ASCIIEncoding.ASCII.GetBytes(firmwareVersions.[i].Name) |>  Array.rev
                let timestampBytes = this.getTimeStampBytes firmwareVersions.[i].Timestamp |> Array.rev
                let sizeBytes = BitConverter.GetBytes(firmwareVersions.[i].Size) |> Array.rev

                data.[index + 3 .. index + 10] <- nameBytes
                data.[index + 11 .. index + 24] <- timestampBytes
                data.[index + 25 .. index + 28] <- sizeBytes
                data.[index + 29] <- firmwareVersions.[i].Status
                index <- index + 27            

            let header = this.buildHeader intro data
            message.Header <- header
            message.Intro <- intro
            message.Data <- data
            message.Tail <- TAIL_BYTE
            message

    //Generate ReturnStatus
    member private this.returnStatus (message : Message) =
        //Validation
        if message.Data.[0] <> 0x00uy then
           this.nakResponse(message,VPL_INVALID)
        else
            let intro = new MessageIntro()
            intro.MessageGroupVersion <- MESSAGE_GROUP_VERSION
            intro.Address <- message.Intro.Address
            intro.SequenceNumber <- this.setHigh(message.Intro.SequenceNumber)
            intro.MessageGroup <- MESSAGE_GROUP
            intro.MessageType <- 131us

            let statusDetails = controller.ReturnStatus();

            let sizeBytes = BitConverter.GetBytes((uint16)statusDetails.Length) |> Array.rev

            let detailBytes = ASCIIEncoding.ASCII.GetBytes(statusDetails) |> Array.rev

            let data = Array.zero_create(statusDetails.Length + 5)
            data.[0] <- 0x08uy
            data.[1..2] <- this.getStatusBytes
            data.[3..4] <- sizeBytes    //Details size
            data.[5..5 + statusDetails.Length - 1] <- detailBytes

            let header = this.buildHeader intro data
            message.Header <- header
            message.Intro <- intro
            message.Data <- data
            message.Tail <- TAIL_BYTE
            message

    //Reset some status bytes    
    member private this.ResetStatus (message : Message) =
        if message.Data.[0] <> 0x05uy then
            this.nakResponse(message, VPL_INVALID)
        else        
            let flagBytes = message.Data.[1..2] |> Array.rev 
            let flags = Enum.ToObject(typeof<ControllerStatus>,BitConverter.ToInt16(flagBytes,0)) :?> ControllerStatus
            let retVal = controller.ResetStatus flags

            if retVal <> 0x00us then
                this.nakResponse(message,retVal)
            else
                this.ackResponse(message)

    //StartLoadingFirmwareVersion (Ack/Nak)
    member private this.StartLoadingFirmwareVersion (message : Message) =
        if (message.Data.[0] <> 0x01uy) then
            this.nakResponse(message, VPL_INVALID)
        else
            //Analyze the data
            let name = message.Data.[1..8] |> Array.rev |> ASCIIEncoding.ASCII.GetString
            let text = message.Data.[9..22] |> Array.rev |> Seq.map(fun x -> ASCIIEncoding.ASCII.GetBytes(x.ToString()).[0]) |> Seq.to_array |> ASCIIEncoding.ASCII.GetString
            let timestamp = DateTime.ParseExact(text,"yyyyMMddHHmmss",Thread.CurrentThread.CurrentCulture)

            let size = BitConverter.ToUInt32(message.Data.[23..26] |> Array.rev,0)
            let overwrite = 
                match message.Data.[27] with
                | 0x00uy -> false
                | _ -> true

            //Create a FirmwareVersion instance
            let firmware = new FirmwareVersion();
            firmware.Name <- name
            firmware.Timestamp <- timestamp
            firmware.Size <- size

            let retVal = controller.StartLoadingFirmwareVersion(firmware,overwrite)

            if retVal <> 0x00us then
                this.nakResponse(message, retVal) //The controller denied the request
            else
                this.ackResponse(message);

    //LoadFirmwareVersionBlock (ACK/NAK)
    member private this.LoadFirmwareVersionBlock (message : Message) =
        if message.Data.[0] <> 0x02uy then
            this.nakResponse(message, VPL_INVALID)
        else
            //Analyze the data
            let lastBlock = 
                match message.Data.[1] with
                | 0x00uy -> false
                | _true -> true

            let blockNumber = BitConverter.ToUInt16(message.Data.[2..3] |> Array.rev,0)            
            let blockSize = BitConverter.ToUInt16(message.Data.[4..5] |> Array.rev,0)
            let blockData = message.Data.[6..6 + (int)blockSize - 1] |> Array.rev

            let retVal = controller.LoadFirmwareVersionBlock(lastBlock, blockNumber, blockSize, blockData)

            if retVal <> 0x00us then
                this.nakResponse(message, retVal)
            else
                this.ackResponse(message)


    (* Helper methods *)
    //We need to convert the DateTime instance to a byte[] understood by the device "yyyymmddhhmmss"
    member private this.getTimeStampBytes (date : DateTime) =
        let stringNumberToByte s = Byte.Parse(s.ToString()) //Casting to (byte) would give different results

        let yearString = date.Year.ToString("0000")
        let monthString = date.Month.ToString("00")
        let dayString = date.Day.ToString("00")
        let hourString = date.Hour.ToString("00")
        let minuteString = date.Minute.ToString("00")
        let secondsString = date.Second.ToString("00")

        let y1 = stringNumberToByte yearString.[0]
        let y2 = stringNumberToByte yearString.[1]
        let y3 = stringNumberToByte yearString.[2]
        let y4 = stringNumberToByte yearString.[3]  
        let m1 = stringNumberToByte monthString.[0]
        let m2 = stringNumberToByte monthString.[1]
        let d1 = stringNumberToByte dayString.[0]
        let d2 = stringNumberToByte dayString.[1]
        let h1 = stringNumberToByte hourString.[0]
        let h2 = stringNumberToByte hourString.[1]
        let min1 = stringNumberToByte minuteString.[0]
        let min2 = stringNumberToByte minuteString.[1]
        let s1 = stringNumberToByte secondsString.[0]
        let s2 = stringNumberToByte secondsString.[1]

        [| y1 ; y2 ; y3 ; y4 ; m1 ; m2 ; d1 ; d2 ; h1 ; h2 ; min1 ; min2 ; s1; s2 |]

    //Sets the high bit of a byte to 1
    member private this.setHigh (b : byte) : byte = 
        let array = new BitArray([| b |])
        array.[7] <- true
        let mutable converted = [| 0 |]
        array.CopyTo(converted, 0);
        (byte)converted.[0]

    //Build the header of a Message based on Intro + Data
    member private this.buildHeader (intro : MessageIntro) (data : byte[]) =
        let headerLength = 7;
        let introLength = 7;
        let length = (uint16)(headerLength + introLength + data.Length)
        let crcData = ByteArrayExtender.Concat(intro.GetRawData(),data)
        let crcValue = ByteArrayExtender.CalculateCRC16(crcData)
        let lengthBytes = UShortExtender.ToIntelOrderedByteArray(length);
        let crcValueBytes = UShortExtender.ToIntelOrderedByteArray(crcValue);
        let headerChecksum = (byte)(SYNC_BYTE ^^^ lengthBytes.[0] ^^^ lengthBytes.[1] ^^^ crcValueBytes.[0] ^^^ crcValueBytes.[1])
        let header = new MessageHeader();
        header.Sync <- SYNC_BYTE
        header.Length <- length
        header.HeaderChecksum <- headerChecksum
        header.DataChecksum <- crcValue
        header

    member private this.getStatusBytes =
        let l = controller.Status
        let status = (uint16)controller.Status
        let statusBytes = BitConverter.GetBytes(status);
        statusBytes |> Array.rev

end

(Tenga en cuenta que en la fuente real, las clases tienen nombres diferentes, más específicos que " Hardware ")

Espero sugerencias, formas de mejorar el código o incluso formas diferentes de manejar el problema. Por ejemplo, ¿el uso de un lenguaje dinámico como IronPython facilitaría las cosas, ¿Voy por el camino equivocado todos juntos? ¿Cuál es tu experiencia con problemas como este, ¿Qué cambiarías, evitarías, etc.?

Actualización :

Basándome en la respuesta de Brian, escribí lo siguiente:

type DrCode9Item = {Name : string ; Timestamp : DateTime ; Size : uint32; Status : byte}
type DrCode11Item = {Id : byte ; X : uint16 ; Y : uint16 ; SizeX : uint16 ; SizeY : uint16
                     Font : string ; Alignment : byte ; Scroll : byte ; Flash : byte}
type DrCode12Item = {Id : byte ; X : uint16 ; Y : uint16 ; SizeX : uint16 ; SizeY : uint16}
type DrCode14Item = {X : byte ; Y : byte}

type DRType =
| DrCode0 of byte
| DrCode1 of byte * string * DateTime * uint32 * byte
| DrCode2 of byte * byte * uint16 * uint16 * array<byte>
| DrCode3 of byte * string
| DrCode4 of byte * string * DateTime * byte * uint16 * array<byte>
| DrCode5 of byte * uint16
| DrCode6 of byte * DateTime
| DrCode7 of byte * uint16 * uint16
| DrCode8 of byte * uint16 * uint16 * uint16 * array<byte>
| DrCode9 of byte * uint16 * array<DrCode9Item>
| DrCode10 of byte * string * DateTime * uint32 * byte * array<byte>
| DrCode11 of byte * array<DrCode11Item>
| DrCode12 of byte * array<DrCode12Item>
| DrCode13 of byte * uint16 * byte * uint16 * uint16 * string * byte * byte
| DrCode14 of byte * array<DrCode14Item>

Podría seguir haciendo esto para todos los tipos de DR (bastantes), pero todavía no entiendo cómo me ayudaría eso. he leído sobre esto en Wikilibros y en Fundamentos de F #, pero algo no está haciendo clic en mi cabeza todavía.

Actualización 2

Por lo tanto, entiendo que podría hacer lo siguiente:

let execute dr =
    match dr with
    | DrCode0(drCode) -> printfn "Do something"
    | DrCode1(drCode, name, timestamp, size, options) -> printfn "Show the size %A" size
    | _ -> ()
let date = DateTime.Now

let x = DrCode1(1uy,"blabla", date, 100ul, 0uy)

Pero cuando el mensaje llega al IMessageProcessor, la elección se hace justo allí qué tipo de mensaje es y entonces se llama la función apropiada. Lo anterior solo Ser código adicional, al menos así es como lo entiendo, así que realmente debo estar perdiendo el punto aquí ... pero no lo veo.

execute x
¿Fue útil?

Solución

Creo que F # es un ajuste natural para representar los mensajes en este dominio a través de uniones discriminadas; Estoy imaginando, por ejemplo,

type Message =
    | Message1 of string * DateTime * int * byte //name,timestamp,size,options
    | Message2 of bool * short * short * byte[]  //last,blocknum,blocksize,data
    ...

junto con métodos para analizar / anular mensajes de / a una matriz de bytes. Como usted dice, este trabajo es sencillo, tedioso.

No tengo claro el procesamiento de los mensajes, pero en general, según su descripción, parece que usted tiene un control sobre ellos.

Me preocupa un poco tu "flexibilidad de herramienta": ¿cuáles son tus limitaciones? (por ejemplo, .Net, debe ser mantenido por programadores que conocen las tecnologías X, Y, Z, deben cumplir ciertos criterios de rendimiento, ...)

Otros consejos

Aquí están mis 2 centavos (advertencia: no conozco F #): tiene un archivo de entrada finamente especificado, Incluso con una gramática completa. Desea asignar el contenido del archivo a las acciones. Por lo tanto, te sugiero que analices el archivo. Siendo un lenguaje funcional, puede ajustarse a la técnica de análisis llamada Análisis de Descendimiento Recursivo . El libro " Experto F # " contiene una discusión sobre el análisis del descenso recursivo.

Licenciado bajo: CC-BY-SA con atribución
No afiliado a StackOverflow
scroll top