Question

Existe-t-il une API de compression disponible pour l'iPhone? Nous construisons des services Web RESTful pour notre application iPhone, mais nous souhaitons compresser au moins certaines des conversations pour plus d’efficacité.

Je me moque du format (ZIP, LHA, peu importe) et il n’est pas nécessaire de le sécuriser.

Certains répondants ont souligné que le serveur peut compresser sa sortie et que l'iPhone peut le consommer. Le scénario que nous avons est exactement l'inverse. Nous publierons du contenu compressé sur le service Web. Nous ne sommes pas concernés par la compression va dans l'autre sens.

Était-ce utile?

La solution

zlib et bzip2 sont disponibles. Et vous pouvez toujours en ajouter d’autres, à condition qu’ils compilent (généralement) sous OS X.

bzip2 est un meilleur choix pour les plus petits fichiers, mais nécessite beaucoup plus de puissance de calcul pour être compressé et décompressé.

De plus, puisque vous parlez à un service Web, il se peut que vous n’ayez pas à faire grand chose. NSURLRequest accepte le codage gzip de manière transparente dans les réponses du serveur.

Autres conseils

Si vous stockez les données des conversations dans un objet NSData, les utilisateurs du wiki CocoaDev ont publié un Catégorie NSData qui ajoute la compression / décompression gzip et zlib en tant que méthodes simples. Celles-ci ont bien fonctionné pour moi dans mon application iPhone .

Comme le lien ci-dessus a disparu alors que le wiki de CocoaDev est transféré vers un nouvel hôte, j'ai reproduit cette catégorie dans son intégralité ci-dessous.

Interface:

@interface NSData (NSDataExtension)

// Returns range [start, null byte), or (NSNotFound, 0).
- (NSRange) rangeOfNullTerminatedBytesFrom:(int)start;

// Canonical Base32 encoding/decoding.
+ (NSData *) dataWithBase32String:(NSString *)base32;
- (NSString *) base32String;

// COBS is an encoding that eliminates 0x00.
- (NSData *) encodeCOBS;
- (NSData *) decodeCOBS;

// ZLIB
- (NSData *) zlibInflate;
- (NSData *) zlibDeflate;

// GZIP
- (NSData *) gzipInflate;
- (NSData *) gzipDeflate;

//CRC32
- (unsigned int)crc32;

// Hash
- (NSData*) md5Digest;
- (NSString*) md5DigestString;
- (NSData*) sha1Digest;
- (NSString*) sha1DigestString;
- (NSData*) ripemd160Digest;
- (NSString*) ripemd160DigestString;

@end

Mise en oeuvre:

#import "NSData+CocoaDevUsersAdditions.h"
#include <zlib.h>
#include <openssl/md5.h>
#include <openssl/sha.h>
#include <openssl/ripemd.h>


@implementation NSData (NSDataExtension)

// Returns range [start, null byte), or (NSNotFound, 0).
- (NSRange) rangeOfNullTerminatedBytesFrom:(int)start
{
    const Byte *pdata = [self bytes];
    int len = [self length];
    if (start < len)
    {
        const Byte *end = memchr (pdata + start, 0x00, len - start);
        if (end != NULL) return NSMakeRange (start, end - (pdata + start));
    }
    return NSMakeRange (NSNotFound, 0);
}

+ (NSData *) dataWithBase32String:(NSString *)encoded
{
    /* First valid character that can be indexed in decode lookup table */
    static int charDigitsBase = '2';

    /* Lookup table used to decode() characters in encoded strings */
    static int charDigits[] =
    {   26,27,28,29,30,31,-1,-1,-1,-1,-1,-1,-1,-1 //   23456789:;<=>?
        ,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14 // @ABCDEFGHIJKLMNO
        ,15,16,17,18,19,20,21,22,23,24,25,-1,-1,-1,-1,-1 // PQRSTUVWXYZ[\]^_
        ,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14 // `abcdefghijklmno
        ,15,16,17,18,19,20,21,22,23,24,25                // pqrstuvwxyz
    };

    if (! [encoded canBeConvertedToEncoding:NSASCIIStringEncoding]) return nil;
    const char *chars = [encoded cStringUsingEncoding:NSASCIIStringEncoding]; // avoids using characterAtIndex.
    int charsLen = [encoded lengthOfBytesUsingEncoding:NSASCIIStringEncoding];

    // Note that the code below could detect non canonical Base32 length within the loop. However canonical Base32 length can be tested before entering the loop.
    // A canonical Base32 length modulo 8 cannot be:
    // 1 (aborts discarding 5 bits at STEP n=0 which produces no byte),
    // 3 (aborts discarding 7 bits at STEP n=2 which produces no byte),
    // 6 (aborts discarding 6 bits at STEP n=1 which produces no byte).
    switch (charsLen & 7) { // test the length of last subblock
        case 1: //  5 bits in subblock:  0 useful bits but 5 discarded
        case 3: // 15 bits in subblock:  8 useful bits but 7 discarded
        case 6: // 30 bits in subblock: 24 useful bits but 6 discarded
            return nil; // non-canonical length
    }
    int charDigitsLen = sizeof(charDigits);
    int bytesLen = (charsLen * 5) >> 3;
    Byte bytes[bytesLen];
    int bytesOffset = 0, charsOffset = 0;
    // Also the code below does test that other discarded bits
    // (1 to 4 bits at end) are effectively 0.
    while (charsLen > 0)
    {
        int digit, lastDigit;
        // STEP n = 0: Read the 1st Char in a 8-Chars subblock
        // Leave 5 bits, asserting there's another encoding Char
        if ((digit = (int)chars[charsOffset] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        lastDigit = digit << 3;
        // STEP n = 5: Read the 2nd Char in a 8-Chars subblock
        // Insert 3 bits, leave 2 bits, possibly trailing if no more Char
        if ((digit = (int)chars[charsOffset + 1] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        bytes[bytesOffset] = (Byte)((digit >> 2) | lastDigit);
        lastDigit = (digit & 3) << 6;
        if (charsLen == 2) {
            if (lastDigit != 0) return nil; // non-canonical end
            break; // discard the 2 trailing null bits
        }
        // STEP n = 2: Read the 3rd Char in a 8-Chars subblock
        // Leave 7 bits, asserting there's another encoding Char
        if ((digit = (int)chars[charsOffset + 2] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        lastDigit |= (Byte)(digit << 1);
        // STEP n = 7: Read the 4th Char in a 8-chars Subblock
        // Insert 1 bit, leave 4 bits, possibly trailing if no more Char
        if ((digit = (int)chars[charsOffset + 3] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        bytes[bytesOffset + 1] = (Byte)((digit >> 4) | lastDigit);
        lastDigit = (Byte)((digit & 15) << 4);
        if (charsLen == 4) {
            if (lastDigit != 0) return nil; // non-canonical end
            break; // discard the 4 trailing null bits
        }
        // STEP n = 4: Read the 5th Char in a 8-Chars subblock
        // Insert 4 bits, leave 1 bit, possibly trailing if no more Char
        if ((digit = (int)chars[charsOffset + 4] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        bytes[bytesOffset + 2] = (Byte)((digit >> 1) | lastDigit);
        lastDigit = (Byte)((digit & 1) << 7);
        if (charsLen == 5) {
            if (lastDigit != 0) return nil; // non-canonical end
            break; // discard the 1 trailing null bit
        }
        // STEP n = 1: Read the 6th Char in a 8-Chars subblock
        // Leave 6 bits, asserting there's another encoding Char
        if ((digit = (int)chars[charsOffset + 5] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        lastDigit |= (Byte)(digit << 2);
        // STEP n = 6: Read the 7th Char in a 8-Chars subblock
        // Insert 2 bits, leave 3 bits, possibly trailing if no more Char
        if ((digit = (int)chars[charsOffset + 6] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        bytes[bytesOffset + 3] = (Byte)((digit >> 3) | lastDigit);
        lastDigit = (Byte)((digit & 7) << 5);
        if (charsLen == 7) {
            if (lastDigit != 0) return nil; // non-canonical end
            break; // discard the 3 trailing null bits
        }
        // STEP n = 3: Read the 8th Char in a 8-Chars subblock
        // Insert 5 bits, leave 0 bit, next encoding Char may not exist
        if ((digit = (int)chars[charsOffset + 7] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        bytes[bytesOffset + 4] = (Byte)(digit | lastDigit);
        //// This point is always reached for chars.length multiple of 8
        charsOffset += 8;
        bytesOffset += 5;
        charsLen -= 8;
    }
    // On loop exit, discard the n trailing null bits
    return [NSData dataWithBytes:bytes length:sizeof(bytes)];
}

- (NSString *) base32String
{
    /* Lookup table used to canonically encode() groups of data bits */
    static char canonicalChars[] =
    {   'A','B','C','D','E','F','G','H','I','J','K','L','M' // 00..12
        ,'N','O','P','Q','R','S','T','U','V','W','X','Y','Z' // 13..25
        ,'2','3','4','5','6','7'                             // 26..31
    };
    const Byte *bytes = [self bytes];
    int bytesOffset = 0, bytesLen = [self length];
    int charsOffset = 0, charsLen = ((bytesLen << 3) + 4) / 5;
    char chars[charsLen];
    while (bytesLen != 0) {
        int digit, lastDigit;
        // INVARIANTS FOR EACH STEP n in [0..5[; digit in [0..31[;
        // The remaining n bits are already aligned on top positions
        // of the 5 least bits of digit, the other bits are 0.
        ////// STEP n = 0: insert new 5 bits, leave 3 bits
        digit = bytes[bytesOffset] & 255;
        chars[charsOffset] = canonicalChars[digit >> 3];
        lastDigit = (digit & 7) << 2;
        if (bytesLen == 1) { // put the last 3 bits
            chars[charsOffset + 1] = canonicalChars[lastDigit];
            break;
        }
        ////// STEP n = 3: insert 2 new bits, then 5 bits, leave 1 bit
        digit = bytes[bytesOffset + 1] & 255;
        chars[charsOffset + 1] = canonicalChars[(digit >> 6) | lastDigit];
        chars[charsOffset + 2] = canonicalChars[(digit >> 1) & 31];
        lastDigit = (digit & 1) << 4;
        if (bytesLen == 2) { // put the last 1 bit
            chars[charsOffset + 3] = canonicalChars[lastDigit];
            break;
        }
        ////// STEP n = 1: insert 4 new bits, leave 4 bit
        digit = bytes[bytesOffset + 2] & 255;
        chars[charsOffset + 3] = canonicalChars[(digit >> 4) | lastDigit];
        lastDigit = (digit & 15) << 1;
        if (bytesLen == 3) { // put the last 1 bits
            chars[charsOffset + 4] = canonicalChars[lastDigit];
            break;
        }
        ////// STEP n = 4: insert 1 new bit, then 5 bits, leave 2 bits
        digit = bytes[bytesOffset + 3] & 255;
        chars[charsOffset + 4] = canonicalChars[(digit >> 7) | lastDigit];
        chars[charsOffset + 5] = canonicalChars[(digit >> 2) & 31];
        lastDigit = (digit & 3) << 3;
        if (bytesLen == 4) { // put the last 2 bits
            chars[charsOffset + 6] = canonicalChars[lastDigit];
            break;
        }
        ////// STEP n = 2: insert 3 new bits, then 5 bits, leave 0 bit
        digit = bytes[bytesOffset + 4] & 255;
        chars[charsOffset + 6] = canonicalChars[(digit >> 5) | lastDigit];
        chars[charsOffset + 7] = canonicalChars[digit & 31];
        //// This point is always reached for bytes.length multiple of 5
        bytesOffset += 5;
        charsOffset += 8;
        bytesLen -= 5;
    }
    return [NSString stringWithCString:chars length:sizeof(chars)];
}

#define FinishBlock(X) \
(*code_ptr = (X), \
code_ptr = dst++, \
code = 0x01)

- (NSData *) encodeCOBS
{
    if ([self length] == 0) return self;

    NSMutableData *encoded = [NSMutableData dataWithLength:([self length] + [self length] / 254 + 1)];
    unsigned char *dst = [encoded mutableBytes];
    const unsigned char *ptr = [self bytes];
    unsigned long length = [self length];
    const unsigned char *end = ptr + length;
    unsigned char *code_ptr = dst++;
    unsigned char code = 0x01;
    while (ptr < end)
    {
        if (*ptr == 0) FinishBlock(code);
        else
        {
            *dst++ = *ptr;
            code++;
            if (code == 0xFF) FinishBlock(code);
        }
        ptr++;
    }
    FinishBlock(code);

    [encoded setLength:((Byte *)dst - (Byte *)[encoded mutableBytes])];
    return [NSData dataWithData:encoded];
}

- (NSData *) decodeCOBS
{
    if ([self length] == 0) return self;

    const Byte *ptr = [self bytes];
    unsigned length = [self length];
    NSMutableData *decoded = [NSMutableData dataWithLength:length];
    Byte *dst = [decoded mutableBytes];
    Byte *basedst = dst;

    const unsigned char *end = ptr + length;
    while (ptr < end)
    {
        int i, code = *ptr++;
        for (i=1; i<code; i++) *dst++ = *ptr++;
        if (code < 0xFF) *dst++ = 0;
    }

    [decoded setLength:(dst - basedst)];
    return [NSData dataWithData:decoded];
}

- (NSData *)zlibInflate
{
    if ([self length] == 0) return self;

    unsigned full_length = [self length];
    unsigned half_length = [self length] / 2;

    NSMutableData *decompressed = [NSMutableData dataWithLength: full_length + half_length];
    BOOL done = NO;
    int status;

    z_stream strm;
    strm.next_in = (Bytef *)[self bytes];
    strm.avail_in = [self length];
    strm.total_out = 0;
    strm.zalloc = Z_NULL;
    strm.zfree = Z_NULL;

    if (inflateInit (&strm) != Z_OK) return nil;

    while (!done)
    {
        // Make sure we have enough room and reset the lengths.
        if (strm.total_out >= [decompressed length])
            [decompressed increaseLengthBy: half_length];
        strm.next_out = [decompressed mutableBytes] + strm.total_out;
        strm.avail_out = [decompressed length] - strm.total_out;

        // Inflate another chunk.
        status = inflate (&strm, Z_SYNC_FLUSH);
        if (status == Z_STREAM_END) done = YES;
        else if (status != Z_OK) break;
    }
    if (inflateEnd (&strm) != Z_OK) return nil;

    // Set real length.
    if (done)
    {
        [decompressed setLength: strm.total_out];
        return [NSData dataWithData: decompressed];
    }
    else return nil;
}

- (NSData *)zlibDeflate
{
    if ([self length] == 0) return self;

    z_stream strm;

    strm.zalloc = Z_NULL;
    strm.zfree = Z_NULL;
    strm.opaque = Z_NULL;
    strm.total_out = 0;
    strm.next_in=(Bytef *)[self bytes];
    strm.avail_in = [self length];

    // Compresssion Levels:
    //   Z_NO_COMPRESSION
    //   Z_BEST_SPEED
    //   Z_BEST_COMPRESSION
    //   Z_DEFAULT_COMPRESSION

    if (deflateInit(&strm, Z_DEFAULT_COMPRESSION) != Z_OK) return nil;

    NSMutableData *compressed = [NSMutableData dataWithLength:16384];  // 16K chuncks for expansion

    do {

        if (strm.total_out >= [compressed length])
            [compressed increaseLengthBy: 16384];

        strm.next_out = [compressed mutableBytes] + strm.total_out;
        strm.avail_out = [compressed length] - strm.total_out;

        deflate(&strm, Z_FINISH);

    } while (strm.avail_out == 0);

    deflateEnd(&strm);

    [compressed setLength: strm.total_out];
    return [NSData dataWithData: compressed];
}

- (NSData *)gzipInflate
{
    if ([self length] == 0) return self;

    unsigned full_length = [self length];
    unsigned half_length = [self length] / 2;

    NSMutableData *decompressed = [NSMutableData dataWithLength: full_length + half_length];
    BOOL done = NO;
    int status;

    z_stream strm;
    strm.next_in = (Bytef *)[self bytes];
    strm.avail_in = [self length];
    strm.total_out = 0;
    strm.zalloc = Z_NULL;
    strm.zfree = Z_NULL;

    if (inflateInit2(&strm, (15+32)) != Z_OK) return nil;
    while (!done)
    {
        // Make sure we have enough room and reset the lengths.
        if (strm.total_out >= [decompressed length])
            [decompressed increaseLengthBy: half_length];
        strm.next_out = [decompressed mutableBytes] + strm.total_out;
        strm.avail_out = [decompressed length] - strm.total_out;

        // Inflate another chunk.
        status = inflate (&strm, Z_SYNC_FLUSH);
        if (status == Z_STREAM_END) done = YES;
        else if (status != Z_OK) break;
    }
    if (inflateEnd (&strm) != Z_OK) return nil;

    // Set real length.
    if (done)
    {
        [decompressed setLength: strm.total_out];
        return [NSData dataWithData: decompressed];
    }
    else return nil;
}

- (NSData *)gzipDeflate
{
    if ([self length] == 0) return self;

    z_stream strm;

    strm.zalloc = Z_NULL;
    strm.zfree = Z_NULL;
    strm.opaque = Z_NULL;
    strm.total_out = 0;
    strm.next_in=(Bytef *)[self bytes];
    strm.avail_in = [self length];

    // Compresssion Levels:
    //   Z_NO_COMPRESSION
    //   Z_BEST_SPEED
    //   Z_BEST_COMPRESSION
    //   Z_DEFAULT_COMPRESSION

    if (deflateInit2(&strm, Z_DEFAULT_COMPRESSION, Z_DEFLATED, (15+16), 8, Z_DEFAULT_STRATEGY) != Z_OK) return nil;

    NSMutableData *compressed = [NSMutableData dataWithLength:16384];  // 16K chunks for expansion

    do {

        if (strm.total_out >= [compressed length])
            [compressed increaseLengthBy: 16384];

        strm.next_out = [compressed mutableBytes] + strm.total_out;
        strm.avail_out = [compressed length] - strm.total_out;

        deflate(&strm, Z_FINISH);

    } while (strm.avail_out == 0);

    deflateEnd(&strm);

    [compressed setLength: strm.total_out];
    return [NSData dataWithData:compressed];
}

// --------------------------------CRC32-------------------------------
static const unsigned long crc32table[] =
{
    0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
    0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
    0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
    0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
    0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
    0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
    0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
    0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
    0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
    0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
    0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
    0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
    0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
    0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
    0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
    0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
    0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
    0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
    0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
    0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
    0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
    0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
    0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
    0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
    0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
    0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
    0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
    0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
    0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
    0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
    0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
    0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};

- (unsigned int)crc32
{
    unsigned int    crcval;
    unsigned int    x, y;
    const void      *bytes;
    unsigned int    max;

    bytes = [self bytes];
    max = [self length];
    crcval = 0xffffffff;
    for (x = 0, y = max; x < y; x++) {
        crcval = ((crcval >> 8) & 0x00ffffff) ^ crc32table[(crcval ^ (*((unsigned char *)bytes + x))) & 0xff];
    }

    return crcval ^ 0xffffffff;
}

// Hash function, by [[DamienBob]]

#define HEComputeDigest(method)                     \
method##_CTX ctx;                               \
unsigned char digest[method##_DIGEST_LENGTH];       \
method##_Init(&ctx);                            \
method##_Update(&ctx, [self bytes], [self length]);     \
method##_Final(digest, &ctx);

#define HEComputeDigestNSData(method)               \
HEComputeDigest(method)                     \
return [NSData dataWithBytes:digest length:method##_DIGEST_LENGTH];

#define HEComputeDigestNSString(method)             \
static char __HEHexDigits[] = "0123456789abcdef";       \
unsigned char digestString[2*method##_DIGEST_LENGTH];\
unsigned int i;                                 \
HEComputeDigest(method)                     \
for(i=0; i<method##_DIGEST_LENGTH; i++) {               \
    digestString[2*i]   = __HEHexDigits[digest[i] >> 4];    \
    digestString[2*i+1] = __HEHexDigits[digest[i] & 0x0f];\
}                                           \
return [NSString stringWithCString:(char *)digestString length:2*method##_DIGEST_LENGTH];

#define SHA1_CTX                SHA_CTX
#define SHA1_DIGEST_LENGTH      SHA_DIGEST_LENGTH

- (NSData*) md5Digest
{
    HEComputeDigestNSData(MD5);
}

- (NSString*) md5DigestString
{
    HEComputeDigestNSString(MD5);
}

- (NSData*) sha1Digest
{
    HEComputeDigestNSData(SHA1);
}

- (NSString*) sha1DigestString
{
    HEComputeDigestNSString(SHA1);
}

- (NSData*) ripemd160Digest
{
    HEComputeDigestNSData(RIPEMD160);
}

- (NSString*) ripemd160DigestString
{
    HEComputeDigestNSString(RIPEMD160);
}

@end

La compression libérée intégrée d'Apple est maintenant disponible pour iOS 9. Un exemple de compression_encode_buffer est présenté ci-dessous pour la compression de NSData.

@import Compression;

NSData *theData = [NSData dataWithContentsOfFile:[<some file> path]];
size_t theDataSize = [theData length];
const uint8_t *buf = (const uint8_t *)[theData bytes];
uint8_t *destBuf = malloc(sizeof(uint8_t) * theDataSize);
size_t compressedSize = compression_encode_buffer(destBuf, theDataSize, buf, theDataSize, NULL, COMPRESSION_LZFSE);
self.<NSData item> = [NSData dataWithBytes:destBuf length:compressedSize];

NSLog(@"originalsize:%zu compressed:%zu", theDataSize, compressedSize);
free(destBuf);

Un certain nombre d'algorithmes différents sont disponibles:

  • LZMA
  • LZ4
  • ZLIB
  • LZFSE

La compression de bloc ou la compression de flux sont toutes deux prises en charge.

Voir https://developer.apple.com/library/ mac / documentation / Performance / Référence / Compression /

Si vous ne disposez que de données compressées et que vous connaissez la taille non compressée, vous pouvez utiliser:

#import "zlib.h"


int datal = [zipedData length];
Bytef *buffer[uncompressedSize];
Bytef *dataa[datal];

[zipedData getBytes:dataa];

Long *ld;

uLong sl = datal;
*ld = uncompressedSize;
if(uncompress(buffer, ld, dataa, sl) == Z_OK)
{
NSData *uncompressedData = [NSData dataWithBytes:buffer length:uncompressedSize];
NSString *txtFile = [[NSString alloc] initWithData:uncompressedData encoding:NSUTF8StringEncoding];
}

Je pense que zlib est disponible sur le téléphone.

croyez-moi, le meilleur choix est d’utiliser ZipArchive, voir: Comment décompresser un fichier Zip crypté AES-256?

prêt à vous aider si nécessaire.

Objective-Zip est une autre option. Voir ces excellentes instructions .

Remarque: je devais convertir le code source pour utiliser ARC à l'aide de XCode - > Edit- > Refactor- > Convertir en Objective C ARC.

NSURL indique qu’il prend en charge le codage gzip. Vous ne devriez donc rien faire d’autre que de demander à votre service Web RESTful de renvoyer du contenu codé gzip, le cas échéant. Tout le décodage se fera sous les couvertures.

Licencié sous: CC-BY-SA avec attribution
Non affilié à StackOverflow
scroll top