Pergunta

Existe uma API de compressão disponível para uso no iPhone? Estamos construindo alguns serviços web RESTful para o nosso aplicativo para iPhone para conversar, mas queremos compressa pelo menos algumas das conversas para a eficiência.

Eu não me importo que o formato (ZIP, LHA, qualquer que seja) é, e ele não precisa de ser seguro.

Alguns entrevistados apontaram que o servidor pode comprimir sua saída, eo iPhone pode consumir isso. O cenário que temos é exatamente o inverso. Nós estaremos postando conteúdo comprimido para o serviço web. Nós não estamos preocupados com a compressão vai para o outro lado.

Foi útil?

Solução

zlib e bzip2 estão disponíveis. E você pode sempre adicionar outros, contanto que eles vão (geralmente) de compilação sob OS X.

bzip2 é uma escolha melhor para tamanhos de arquivos menores, mas exige muito mais poder de CPU para comprimir e descomprimir.

Além disso, desde que você está falando com um serviço web, você pode não ter de fazer muito. NSURLRequest aceita gzip codificação de forma transparente em respostas do servidor.

Outras dicas

Se você armazenar os dados para as conversas em um objeto NSData, o pessoal da CocoaDev wiki colocaram um NSData categoria que adiciona gzip e zlib compressão / descompressão de métodos simples. Estes têm funcionado bem para mim no minha aplicação do iPhone .

Como o link acima foi morto enquanto o wiki CocoaDev está sendo movido para um novo hospedeiro, eu reproduzida nesta categoria na íntegra abaixo.

Interface:

@interface NSData (NSDataExtension)

// Returns range [start, null byte), or (NSNotFound, 0).
- (NSRange) rangeOfNullTerminatedBytesFrom:(int)start;

// Canonical Base32 encoding/decoding.
+ (NSData *) dataWithBase32String:(NSString *)base32;
- (NSString *) base32String;

// COBS is an encoding that eliminates 0x00.
- (NSData *) encodeCOBS;
- (NSData *) decodeCOBS;

// ZLIB
- (NSData *) zlibInflate;
- (NSData *) zlibDeflate;

// GZIP
- (NSData *) gzipInflate;
- (NSData *) gzipDeflate;

//CRC32
- (unsigned int)crc32;

// Hash
- (NSData*) md5Digest;
- (NSString*) md5DigestString;
- (NSData*) sha1Digest;
- (NSString*) sha1DigestString;
- (NSData*) ripemd160Digest;
- (NSString*) ripemd160DigestString;

@end

Implementação:

#import "NSData+CocoaDevUsersAdditions.h"
#include <zlib.h>
#include <openssl/md5.h>
#include <openssl/sha.h>
#include <openssl/ripemd.h>


@implementation NSData (NSDataExtension)

// Returns range [start, null byte), or (NSNotFound, 0).
- (NSRange) rangeOfNullTerminatedBytesFrom:(int)start
{
    const Byte *pdata = [self bytes];
    int len = [self length];
    if (start < len)
    {
        const Byte *end = memchr (pdata + start, 0x00, len - start);
        if (end != NULL) return NSMakeRange (start, end - (pdata + start));
    }
    return NSMakeRange (NSNotFound, 0);
}

+ (NSData *) dataWithBase32String:(NSString *)encoded
{
    /* First valid character that can be indexed in decode lookup table */
    static int charDigitsBase = '2';

    /* Lookup table used to decode() characters in encoded strings */
    static int charDigits[] =
    {   26,27,28,29,30,31,-1,-1,-1,-1,-1,-1,-1,-1 //   23456789:;<=>?
        ,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14 // @ABCDEFGHIJKLMNO
        ,15,16,17,18,19,20,21,22,23,24,25,-1,-1,-1,-1,-1 // PQRSTUVWXYZ[\]^_
        ,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14 // `abcdefghijklmno
        ,15,16,17,18,19,20,21,22,23,24,25                // pqrstuvwxyz
    };

    if (! [encoded canBeConvertedToEncoding:NSASCIIStringEncoding]) return nil;
    const char *chars = [encoded cStringUsingEncoding:NSASCIIStringEncoding]; // avoids using characterAtIndex.
    int charsLen = [encoded lengthOfBytesUsingEncoding:NSASCIIStringEncoding];

    // Note that the code below could detect non canonical Base32 length within the loop. However canonical Base32 length can be tested before entering the loop.
    // A canonical Base32 length modulo 8 cannot be:
    // 1 (aborts discarding 5 bits at STEP n=0 which produces no byte),
    // 3 (aborts discarding 7 bits at STEP n=2 which produces no byte),
    // 6 (aborts discarding 6 bits at STEP n=1 which produces no byte).
    switch (charsLen & 7) { // test the length of last subblock
        case 1: //  5 bits in subblock:  0 useful bits but 5 discarded
        case 3: // 15 bits in subblock:  8 useful bits but 7 discarded
        case 6: // 30 bits in subblock: 24 useful bits but 6 discarded
            return nil; // non-canonical length
    }
    int charDigitsLen = sizeof(charDigits);
    int bytesLen = (charsLen * 5) >> 3;
    Byte bytes[bytesLen];
    int bytesOffset = 0, charsOffset = 0;
    // Also the code below does test that other discarded bits
    // (1 to 4 bits at end) are effectively 0.
    while (charsLen > 0)
    {
        int digit, lastDigit;
        // STEP n = 0: Read the 1st Char in a 8-Chars subblock
        // Leave 5 bits, asserting there's another encoding Char
        if ((digit = (int)chars[charsOffset] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        lastDigit = digit << 3;
        // STEP n = 5: Read the 2nd Char in a 8-Chars subblock
        // Insert 3 bits, leave 2 bits, possibly trailing if no more Char
        if ((digit = (int)chars[charsOffset + 1] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        bytes[bytesOffset] = (Byte)((digit >> 2) | lastDigit);
        lastDigit = (digit & 3) << 6;
        if (charsLen == 2) {
            if (lastDigit != 0) return nil; // non-canonical end
            break; // discard the 2 trailing null bits
        }
        // STEP n = 2: Read the 3rd Char in a 8-Chars subblock
        // Leave 7 bits, asserting there's another encoding Char
        if ((digit = (int)chars[charsOffset + 2] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        lastDigit |= (Byte)(digit << 1);
        // STEP n = 7: Read the 4th Char in a 8-chars Subblock
        // Insert 1 bit, leave 4 bits, possibly trailing if no more Char
        if ((digit = (int)chars[charsOffset + 3] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        bytes[bytesOffset + 1] = (Byte)((digit >> 4) | lastDigit);
        lastDigit = (Byte)((digit & 15) << 4);
        if (charsLen == 4) {
            if (lastDigit != 0) return nil; // non-canonical end
            break; // discard the 4 trailing null bits
        }
        // STEP n = 4: Read the 5th Char in a 8-Chars subblock
        // Insert 4 bits, leave 1 bit, possibly trailing if no more Char
        if ((digit = (int)chars[charsOffset + 4] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        bytes[bytesOffset + 2] = (Byte)((digit >> 1) | lastDigit);
        lastDigit = (Byte)((digit & 1) << 7);
        if (charsLen == 5) {
            if (lastDigit != 0) return nil; // non-canonical end
            break; // discard the 1 trailing null bit
        }
        // STEP n = 1: Read the 6th Char in a 8-Chars subblock
        // Leave 6 bits, asserting there's another encoding Char
        if ((digit = (int)chars[charsOffset + 5] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        lastDigit |= (Byte)(digit << 2);
        // STEP n = 6: Read the 7th Char in a 8-Chars subblock
        // Insert 2 bits, leave 3 bits, possibly trailing if no more Char
        if ((digit = (int)chars[charsOffset + 6] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        bytes[bytesOffset + 3] = (Byte)((digit >> 3) | lastDigit);
        lastDigit = (Byte)((digit & 7) << 5);
        if (charsLen == 7) {
            if (lastDigit != 0) return nil; // non-canonical end
            break; // discard the 3 trailing null bits
        }
        // STEP n = 3: Read the 8th Char in a 8-Chars subblock
        // Insert 5 bits, leave 0 bit, next encoding Char may not exist
        if ((digit = (int)chars[charsOffset + 7] - charDigitsBase) < 0 || digit >= charDigitsLen || (digit = charDigits[digit]) == -1)
            return nil; // invalid character
        bytes[bytesOffset + 4] = (Byte)(digit | lastDigit);
        //// This point is always reached for chars.length multiple of 8
        charsOffset += 8;
        bytesOffset += 5;
        charsLen -= 8;
    }
    // On loop exit, discard the n trailing null bits
    return [NSData dataWithBytes:bytes length:sizeof(bytes)];
}

- (NSString *) base32String
{
    /* Lookup table used to canonically encode() groups of data bits */
    static char canonicalChars[] =
    {   'A','B','C','D','E','F','G','H','I','J','K','L','M' // 00..12
        ,'N','O','P','Q','R','S','T','U','V','W','X','Y','Z' // 13..25
        ,'2','3','4','5','6','7'                             // 26..31
    };
    const Byte *bytes = [self bytes];
    int bytesOffset = 0, bytesLen = [self length];
    int charsOffset = 0, charsLen = ((bytesLen << 3) + 4) / 5;
    char chars[charsLen];
    while (bytesLen != 0) {
        int digit, lastDigit;
        // INVARIANTS FOR EACH STEP n in [0..5[; digit in [0..31[;
        // The remaining n bits are already aligned on top positions
        // of the 5 least bits of digit, the other bits are 0.
        ////// STEP n = 0: insert new 5 bits, leave 3 bits
        digit = bytes[bytesOffset] & 255;
        chars[charsOffset] = canonicalChars[digit >> 3];
        lastDigit = (digit & 7) << 2;
        if (bytesLen == 1) { // put the last 3 bits
            chars[charsOffset + 1] = canonicalChars[lastDigit];
            break;
        }
        ////// STEP n = 3: insert 2 new bits, then 5 bits, leave 1 bit
        digit = bytes[bytesOffset + 1] & 255;
        chars[charsOffset + 1] = canonicalChars[(digit >> 6) | lastDigit];
        chars[charsOffset + 2] = canonicalChars[(digit >> 1) & 31];
        lastDigit = (digit & 1) << 4;
        if (bytesLen == 2) { // put the last 1 bit
            chars[charsOffset + 3] = canonicalChars[lastDigit];
            break;
        }
        ////// STEP n = 1: insert 4 new bits, leave 4 bit
        digit = bytes[bytesOffset + 2] & 255;
        chars[charsOffset + 3] = canonicalChars[(digit >> 4) | lastDigit];
        lastDigit = (digit & 15) << 1;
        if (bytesLen == 3) { // put the last 1 bits
            chars[charsOffset + 4] = canonicalChars[lastDigit];
            break;
        }
        ////// STEP n = 4: insert 1 new bit, then 5 bits, leave 2 bits
        digit = bytes[bytesOffset + 3] & 255;
        chars[charsOffset + 4] = canonicalChars[(digit >> 7) | lastDigit];
        chars[charsOffset + 5] = canonicalChars[(digit >> 2) & 31];
        lastDigit = (digit & 3) << 3;
        if (bytesLen == 4) { // put the last 2 bits
            chars[charsOffset + 6] = canonicalChars[lastDigit];
            break;
        }
        ////// STEP n = 2: insert 3 new bits, then 5 bits, leave 0 bit
        digit = bytes[bytesOffset + 4] & 255;
        chars[charsOffset + 6] = canonicalChars[(digit >> 5) | lastDigit];
        chars[charsOffset + 7] = canonicalChars[digit & 31];
        //// This point is always reached for bytes.length multiple of 5
        bytesOffset += 5;
        charsOffset += 8;
        bytesLen -= 5;
    }
    return [NSString stringWithCString:chars length:sizeof(chars)];
}

#define FinishBlock(X) \
(*code_ptr = (X), \
code_ptr = dst++, \
code = 0x01)

- (NSData *) encodeCOBS
{
    if ([self length] == 0) return self;

    NSMutableData *encoded = [NSMutableData dataWithLength:([self length] + [self length] / 254 + 1)];
    unsigned char *dst = [encoded mutableBytes];
    const unsigned char *ptr = [self bytes];
    unsigned long length = [self length];
    const unsigned char *end = ptr + length;
    unsigned char *code_ptr = dst++;
    unsigned char code = 0x01;
    while (ptr < end)
    {
        if (*ptr == 0) FinishBlock(code);
        else
        {
            *dst++ = *ptr;
            code++;
            if (code == 0xFF) FinishBlock(code);
        }
        ptr++;
    }
    FinishBlock(code);

    [encoded setLength:((Byte *)dst - (Byte *)[encoded mutableBytes])];
    return [NSData dataWithData:encoded];
}

- (NSData *) decodeCOBS
{
    if ([self length] == 0) return self;

    const Byte *ptr = [self bytes];
    unsigned length = [self length];
    NSMutableData *decoded = [NSMutableData dataWithLength:length];
    Byte *dst = [decoded mutableBytes];
    Byte *basedst = dst;

    const unsigned char *end = ptr + length;
    while (ptr < end)
    {
        int i, code = *ptr++;
        for (i=1; i<code; i++) *dst++ = *ptr++;
        if (code < 0xFF) *dst++ = 0;
    }

    [decoded setLength:(dst - basedst)];
    return [NSData dataWithData:decoded];
}

- (NSData *)zlibInflate
{
    if ([self length] == 0) return self;

    unsigned full_length = [self length];
    unsigned half_length = [self length] / 2;

    NSMutableData *decompressed = [NSMutableData dataWithLength: full_length + half_length];
    BOOL done = NO;
    int status;

    z_stream strm;
    strm.next_in = (Bytef *)[self bytes];
    strm.avail_in = [self length];
    strm.total_out = 0;
    strm.zalloc = Z_NULL;
    strm.zfree = Z_NULL;

    if (inflateInit (&strm) != Z_OK) return nil;

    while (!done)
    {
        // Make sure we have enough room and reset the lengths.
        if (strm.total_out >= [decompressed length])
            [decompressed increaseLengthBy: half_length];
        strm.next_out = [decompressed mutableBytes] + strm.total_out;
        strm.avail_out = [decompressed length] - strm.total_out;

        // Inflate another chunk.
        status = inflate (&strm, Z_SYNC_FLUSH);
        if (status == Z_STREAM_END) done = YES;
        else if (status != Z_OK) break;
    }
    if (inflateEnd (&strm) != Z_OK) return nil;

    // Set real length.
    if (done)
    {
        [decompressed setLength: strm.total_out];
        return [NSData dataWithData: decompressed];
    }
    else return nil;
}

- (NSData *)zlibDeflate
{
    if ([self length] == 0) return self;

    z_stream strm;

    strm.zalloc = Z_NULL;
    strm.zfree = Z_NULL;
    strm.opaque = Z_NULL;
    strm.total_out = 0;
    strm.next_in=(Bytef *)[self bytes];
    strm.avail_in = [self length];

    // Compresssion Levels:
    //   Z_NO_COMPRESSION
    //   Z_BEST_SPEED
    //   Z_BEST_COMPRESSION
    //   Z_DEFAULT_COMPRESSION

    if (deflateInit(&strm, Z_DEFAULT_COMPRESSION) != Z_OK) return nil;

    NSMutableData *compressed = [NSMutableData dataWithLength:16384];  // 16K chuncks for expansion

    do {

        if (strm.total_out >= [compressed length])
            [compressed increaseLengthBy: 16384];

        strm.next_out = [compressed mutableBytes] + strm.total_out;
        strm.avail_out = [compressed length] - strm.total_out;

        deflate(&strm, Z_FINISH);

    } while (strm.avail_out == 0);

    deflateEnd(&strm);

    [compressed setLength: strm.total_out];
    return [NSData dataWithData: compressed];
}

- (NSData *)gzipInflate
{
    if ([self length] == 0) return self;

    unsigned full_length = [self length];
    unsigned half_length = [self length] / 2;

    NSMutableData *decompressed = [NSMutableData dataWithLength: full_length + half_length];
    BOOL done = NO;
    int status;

    z_stream strm;
    strm.next_in = (Bytef *)[self bytes];
    strm.avail_in = [self length];
    strm.total_out = 0;
    strm.zalloc = Z_NULL;
    strm.zfree = Z_NULL;

    if (inflateInit2(&strm, (15+32)) != Z_OK) return nil;
    while (!done)
    {
        // Make sure we have enough room and reset the lengths.
        if (strm.total_out >= [decompressed length])
            [decompressed increaseLengthBy: half_length];
        strm.next_out = [decompressed mutableBytes] + strm.total_out;
        strm.avail_out = [decompressed length] - strm.total_out;

        // Inflate another chunk.
        status = inflate (&strm, Z_SYNC_FLUSH);
        if (status == Z_STREAM_END) done = YES;
        else if (status != Z_OK) break;
    }
    if (inflateEnd (&strm) != Z_OK) return nil;

    // Set real length.
    if (done)
    {
        [decompressed setLength: strm.total_out];
        return [NSData dataWithData: decompressed];
    }
    else return nil;
}

- (NSData *)gzipDeflate
{
    if ([self length] == 0) return self;

    z_stream strm;

    strm.zalloc = Z_NULL;
    strm.zfree = Z_NULL;
    strm.opaque = Z_NULL;
    strm.total_out = 0;
    strm.next_in=(Bytef *)[self bytes];
    strm.avail_in = [self length];

    // Compresssion Levels:
    //   Z_NO_COMPRESSION
    //   Z_BEST_SPEED
    //   Z_BEST_COMPRESSION
    //   Z_DEFAULT_COMPRESSION

    if (deflateInit2(&strm, Z_DEFAULT_COMPRESSION, Z_DEFLATED, (15+16), 8, Z_DEFAULT_STRATEGY) != Z_OK) return nil;

    NSMutableData *compressed = [NSMutableData dataWithLength:16384];  // 16K chunks for expansion

    do {

        if (strm.total_out >= [compressed length])
            [compressed increaseLengthBy: 16384];

        strm.next_out = [compressed mutableBytes] + strm.total_out;
        strm.avail_out = [compressed length] - strm.total_out;

        deflate(&strm, Z_FINISH);

    } while (strm.avail_out == 0);

    deflateEnd(&strm);

    [compressed setLength: strm.total_out];
    return [NSData dataWithData:compressed];
}

// --------------------------------CRC32-------------------------------
static const unsigned long crc32table[] =
{
    0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
    0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
    0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
    0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
    0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
    0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
    0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
    0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
    0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
    0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
    0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
    0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
    0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
    0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
    0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
    0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
    0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
    0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
    0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
    0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
    0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
    0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
    0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
    0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
    0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
    0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
    0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
    0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
    0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
    0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
    0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
    0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};

- (unsigned int)crc32
{
    unsigned int    crcval;
    unsigned int    x, y;
    const void      *bytes;
    unsigned int    max;

    bytes = [self bytes];
    max = [self length];
    crcval = 0xffffffff;
    for (x = 0, y = max; x < y; x++) {
        crcval = ((crcval >> 8) & 0x00ffffff) ^ crc32table[(crcval ^ (*((unsigned char *)bytes + x))) & 0xff];
    }

    return crcval ^ 0xffffffff;
}

// Hash function, by [[DamienBob]]

#define HEComputeDigest(method)                     \
method##_CTX ctx;                               \
unsigned char digest[method##_DIGEST_LENGTH];       \
method##_Init(&ctx);                            \
method##_Update(&ctx, [self bytes], [self length]);     \
method##_Final(digest, &ctx);

#define HEComputeDigestNSData(method)               \
HEComputeDigest(method)                     \
return [NSData dataWithBytes:digest length:method##_DIGEST_LENGTH];

#define HEComputeDigestNSString(method)             \
static char __HEHexDigits[] = "0123456789abcdef";       \
unsigned char digestString[2*method##_DIGEST_LENGTH];\
unsigned int i;                                 \
HEComputeDigest(method)                     \
for(i=0; i<method##_DIGEST_LENGTH; i++) {               \
    digestString[2*i]   = __HEHexDigits[digest[i] >> 4];    \
    digestString[2*i+1] = __HEHexDigits[digest[i] & 0x0f];\
}                                           \
return [NSString stringWithCString:(char *)digestString length:2*method##_DIGEST_LENGTH];

#define SHA1_CTX                SHA_CTX
#define SHA1_DIGEST_LENGTH      SHA_DIGEST_LENGTH

- (NSData*) md5Digest
{
    HEComputeDigestNSData(MD5);
}

- (NSString*) md5DigestString
{
    HEComputeDigestNSString(MD5);
}

- (NSData*) sha1Digest
{
    HEComputeDigestNSData(SHA1);
}

- (NSString*) sha1DigestString
{
    HEComputeDigestNSString(SHA1);
}

- (NSData*) ripemd160Digest
{
    HEComputeDigestNSData(RIPEMD160);
}

- (NSString*) ripemd160DigestString
{
    HEComputeDigestNSString(RIPEMD160);
}

@end

O construído em libcompression a Apple está agora disponível para iOS 9. Um pequeno exemplo de compression_encode_buffer é mostrado abaixo para comprimir NSData.

@import Compression;

NSData *theData = [NSData dataWithContentsOfFile:[<some file> path]];
size_t theDataSize = [theData length];
const uint8_t *buf = (const uint8_t *)[theData bytes];
uint8_t *destBuf = malloc(sizeof(uint8_t) * theDataSize);
size_t compressedSize = compression_encode_buffer(destBuf, theDataSize, buf, theDataSize, NULL, COMPRESSION_LZFSE);
self.<NSData item> = [NSData dataWithBytes:destBuf length:compressedSize];

NSLog(@"originalsize:%zu compressed:%zu", theDataSize, compressedSize);
free(destBuf);

Um número de diferentes algoritmos estão disponíveis:

  • LZMA
  • LZ4
  • ZLIB
  • LZFSE

compressão Bloquear ou compressão de fluxo são ambos suportados.

https://developer.apple.com/library/ mac / documentation / Performance / Reference / compressão /

Se você tiver apenas dados comprimidos e saber o tamanho não comprimido que você pode usar:

#import "zlib.h"


int datal = [zipedData length];
Bytef *buffer[uncompressedSize];
Bytef *dataa[datal];

[zipedData getBytes:dataa];

Long *ld;

uLong sl = datal;
*ld = uncompressedSize;
if(uncompress(buffer, ld, dataa, sl) == Z_OK)
{
NSData *uncompressedData = [NSData dataWithBytes:buffer length:uncompressedSize];
NSString *txtFile = [[NSString alloc] initWithData:uncompressedData encoding:NSUTF8StringEncoding];
}

Eu acredito zlib está disponível no telefone.

confiança mim a melhor opção é usar ver ZipArchive: Como descompactar um arquivo Zip criptografado AES-256?

pronto para ajudar se necessário.

NSURL diz que suporta a codificação gzip para que você não deve ter que fazer nada mais do que ter o seu serviço web retorno gzip RESTful conteúdo codificado quando apropriado. Toda a decodificação será feita sob as cobertas.

scroll top