OpenGL ES 2.0 (spécifiquement pour l'iPhone) rendu est légèrement. Meilleure estimation est c'est un problème de la matrice de projection

StackOverflow https://stackoverflow.com/questions/3886329

Question

Alors je l'ai acheté Iphone programmation 3D O'reilly et trouvé ce que je crois être un bogue dans le code là. Cependant, je ne peux pas comprendre quel est le problème, et à moins que je ne je ne peux pas aller de l'avant avec mon propre code.

Je vais coller ce que je considère être le code approprié dans ce post, mais heureusement tout le code est disponible en ligne à l'adresse: http://examples.oreilly.com/9780596804831/HelloCone/

Le problème que j'ai est avec leur OpenGL ES 2.0 renderer, il ne se présente pas dans leur ES 1.1 renderer.

Alors, ce que j'ai remarqué est que le cône ne rend pas exactement dans la position correcte. Pour tester cela, je changé le ModelViewMatrix de rendre exactement sur le plan FrustumNear. Ainsi, le cône doit apparaître complètement coupée en deux. Quand je fais cela avec l'ES 1.1 rendre c'est le cas, quand je fais la même chose dans OpenGL ES 2.0 mais il est pas. Le cône est pour la plupart là-bas, mais légèrement rasés. Ce qui signifie qu'il n'est pas exactement l'atterrissage sur le visage près du fustrum.

Voici le code d'initialisation où la matrice de projection est créé et mis en place:

void RenderingEngine2::Initialize(int width, int height)
{
const float coneRadius = 0.5f;
const float coneHeight = 1.0f;
const int coneSlices = 40;

{
    // Allocate space for the cone vertices.
    m_cone.resize((coneSlices + 1) * 2);

    // Initialize the vertices of the triangle strip.
    vector<Vertex>::iterator vertex = m_cone.begin();
    const float dtheta = TwoPi / coneSlices;
    for (float theta = 0; vertex != m_cone.end(); theta += dtheta) {

        // Grayscale gradient
        float brightness = abs(sin(theta));
        vec4 color(brightness, brightness, brightness, 1);

        // Apex vertex
        vertex->Position = vec3(0, 1, 0);
        vertex->Color = color;
        vertex++;

        // Rim vertex
        vertex->Position.x = coneRadius * cos(theta);
        vertex->Position.y = 1 - coneHeight;
        vertex->Position.z = coneRadius * sin(theta);
        vertex->Color = color;
        vertex++;
    }
}

{
    // Allocate space for the disk vertices.
    m_disk.resize(coneSlices + 2);

    // Initialize the center vertex of the triangle fan.
    vector<Vertex>::iterator vertex = m_disk.begin();
    vertex->Color = vec4(0.75, 0.75, 0.75, 1);
    vertex->Position.x = 0;
    vertex->Position.y = 1 - coneHeight;
    vertex->Position.z = 0;
    vertex++;

    // Initialize the rim vertices of the triangle fan.
    const float dtheta = TwoPi / coneSlices;
    for (float theta = 0; vertex != m_disk.end(); theta += dtheta) {
        vertex->Color = vec4(0.75, 0.75, 0.75, 1);
        vertex->Position.x = coneRadius * cos(theta);
        vertex->Position.y = 1 - coneHeight;
        vertex->Position.z = coneRadius * sin(theta);
        vertex++;
    }
}

// Create the depth buffer.
glGenRenderbuffers(1, &m_depthRenderbuffer);
glBindRenderbuffer(GL_RENDERBUFFER, m_depthRenderbuffer);
glRenderbufferStorage(GL_RENDERBUFFER,
                      GL_DEPTH_COMPONENT16,
                      width,
                      height);

// Create the framebuffer object; attach the depth and color buffers.
glGenFramebuffers(1, &m_framebuffer);
glBindFramebuffer(GL_FRAMEBUFFER, m_framebuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER,
                          GL_COLOR_ATTACHMENT0,
                          GL_RENDERBUFFER,
                          m_colorRenderbuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER,
                          GL_DEPTH_ATTACHMENT,
                          GL_RENDERBUFFER,
                          m_depthRenderbuffer);

// Bind the color buffer for rendering.
glBindRenderbuffer(GL_RENDERBUFFER, m_colorRenderbuffer);

// Set up some GL state.
glViewport(0, 0, width, height);
glEnable(GL_DEPTH_TEST);

// Build the GLSL program.
m_simpleProgram = BuildProgram(SimpleVertexShader, SimpleFragmentShader);
glUseProgram(m_simpleProgram);

// Set the projection matrix.
GLint projectionUniform = glGetUniformLocation(m_simpleProgram, "Projection");
mat4 projectionMatrix = mat4::Frustum(-1.6f, 1.6, -2.4, 2.4, 5, 10);
glUniformMatrix4fv(projectionUniform, 1, 0, projectionMatrix.Pointer());
}

Et voici le code de rendu. Comme vous pouvez le voir, je l'ai changé le ModelVieMatrix de placer le cône sur le coin inférieur gauche du visage près de Frustum.

void RenderingEngine2::Render() const
{
GLuint positionSlot = glGetAttribLocation(m_simpleProgram, "Position");
GLuint colorSlot = glGetAttribLocation(m_simpleProgram, "SourceColor");

glClearColor(0.5f, 0.5f, 0.5f, 1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glEnableVertexAttribArray(positionSlot);
glEnableVertexAttribArray(colorSlot);

mat4 rotation (m_animation.Current.ToMatrix ());     mat4 traduction = mat4 :: Traduire (-1,6, -2,4, -5);

// Set the model-view matrix.
GLint modelviewUniform = glGetUniformLocation(m_simpleProgram, "Modelview");
mat4 modelviewMatrix = rotation * translation;
glUniformMatrix4fv(modelviewUniform, 1, 0, modelviewMatrix.Pointer());

// Draw the cone.
{
  GLsizei stride = sizeof(Vertex);
  const GLvoid* pCoords = &m_cone[0].Position.x;
  const GLvoid* pColors = &m_cone[0].Color.x;
  glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, stride, pCoords);
  glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, pColors);
  glDrawArrays(GL_TRIANGLE_STRIP, 0, m_cone.size());
}

// Draw the disk that caps off the base of the cone.
{
  GLsizei stride = sizeof(Vertex);
  const GLvoid* pCoords = &m_disk[0].Position.x;
  const GLvoid* pColors = &m_disk[0].Color.x;
  glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, stride, pCoords);
  glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, pColors);
  glDrawArrays(GL_TRIANGLE_FAN, 0, m_disk.size());
}

glDisableVertexAttribArray(positionSlot);
glDisableVertexAttribArray(colorSlot);
}
Était-ce utile?

La solution

On dirait que j'ai trouvé la réponse à ma propre question.

La matrice de projection dans le code O'Reilly est calculé de manière incorrecte.

Dans leur code qu'ils ont:

T a = 2 * near / (right - left);
T b = 2 * near / (top - bottom);
T c = (right + left) / (right - left);
T d = (top + bottom) / (top - bottom);
T e = - (far + near) / (far - near);
T f = -2 * far * near / (far - near);
Matrix4 m;
m.x.x = a; m.x.y = 0; m.x.z = 0; m.x.w = 0;
m.y.x = 0; m.y.y = b; m.y.z = 0; m.y.w = 0;
m.z.x = c; m.z.y = d; m.z.z = e; m.z.w = -1;
m.w.x = 0; m.w.y = 0; m.w.z = f; m.w.w = 1;
return m;

Toutefois, ce n'est pas la matrice de projection. m.w.w devrait être 0 pas 1.

Matrix4 m;
m.x.x = a; m.x.y = 0; m.x.z = 0; m.x.w = 0;
m.y.x = 0; m.y.y = b; m.y.z = 0; m.y.w = 0;
m.z.x = c; m.z.y = d; m.z.z = e; m.z.w = -1;
m.w.x = 0; m.w.y = 0; m.w.z = f; m.w.w = 0;
return m;
Licencié sous: CC-BY-SA avec attribution
Non affilié à StackOverflow
scroll top