Domanda

Sto cercando un'implementazione .NET di una coda prioritaria o di una struttura di dati heap

  

Le code prioritarie sono strutture di dati che offrono maggiore flessibilità rispetto al semplice ordinamento, poiché consentono a nuovi elementi di entrare in un sistema a intervalli arbitrari. È molto più conveniente inserire un nuovo lavoro in una coda prioritaria piuttosto che riordinare tutto su ciascuno di questi arrivi.

     

La coda di priorità di base supporta tre operazioni principali:

     
      
  • Inserisci (Q, x). Dato un elemento x con chiave k, inserirlo nella coda di priorità Q.
  •   
  • Trova-minima (Q). Restituisce un puntatore all'elemento   il cui valore chiave è inferiore a qualsiasi altra chiave nella coda di priorità   Q.
  •   
  • Elimina-minima (Q). Rimuovi l'elemento dalla coda di priorità Q la cui chiave è minima
  •   

A meno che non stia guardando nel posto sbagliato, non ce n'è uno nel framework. Qualcuno è a conoscenza di una buona, o dovrei farlo io?

È stato utile?

Soluzione

Mi piace usare le classi OrderedBag e OrderedSet in PowerCollections come code prioritarie.

Altri suggerimenti

Potresti gradire IntervalHeap dalla C5 Generic Collection Library . Per citare la guida per l'utente

  

La classe IntervalHeap<T> implementa l'interfaccia IPriorityQueue<T> usando un heap di intervallo memorizzato come una matrice di coppie. The FindMin e   Le operazioni FindMax e l'indicizzatore & # 8217; s get-accessor, richiedono tempo O (1). The DeleteMin,   Le operazioni DeleteMax, Add and Update e l'indicizzatore set & # 8217; s, richiedono tempo   O (registro n). Contrariamente a una normale coda di priorità, un heap di intervallo offre sia il minimo   e massime operazioni con la stessa efficienza.

L'API è abbastanza semplice

> var heap = new C5.IntervalHeap<int>();
> heap.Add(10);
> heap.Add(5);
> heap.FindMin();
5

Installa da Nuget https://www.nuget.org/packages/C5 o GitHub https://github.com/sestoft/C5/

Ecco il mio tentativo di un heap .NET

public abstract class Heap<T> : IEnumerable<T>
{
    private const int InitialCapacity = 0;
    private const int GrowFactor = 2;
    private const int MinGrow = 1;

    private int _capacity = InitialCapacity;
    private T[] _heap = new T[InitialCapacity];
    private int _tail = 0;

    public int Count { get { return _tail; } }
    public int Capacity { get { return _capacity; } }

    protected Comparer<T> Comparer { get; private set; }
    protected abstract bool Dominates(T x, T y);

    protected Heap() : this(Comparer<T>.Default)
    {
    }

    protected Heap(Comparer<T> comparer) : this(Enumerable.Empty<T>(), comparer)
    {
    }

    protected Heap(IEnumerable<T> collection)
        : this(collection, Comparer<T>.Default)
    {
    }

    protected Heap(IEnumerable<T> collection, Comparer<T> comparer)
    {
        if (collection == null) throw new ArgumentNullException("collection");
        if (comparer == null) throw new ArgumentNullException("comparer");

        Comparer = comparer;

        foreach (var item in collection)
        {
            if (Count == Capacity)
                Grow();

            _heap[_tail++] = item;
        }

        for (int i = Parent(_tail - 1); i >= 0; i--)
            BubbleDown(i);
    }

    public void Add(T item)
    {
        if (Count == Capacity)
            Grow();

        _heap[_tail++] = item;
        BubbleUp(_tail - 1);
    }

    private void BubbleUp(int i)
    {
        if (i == 0 || Dominates(_heap[Parent(i)], _heap[i])) 
            return; //correct domination (or root)

        Swap(i, Parent(i));
        BubbleUp(Parent(i));
    }

    public T GetMin()
    {
        if (Count == 0) throw new InvalidOperationException("Heap is empty");
        return _heap[0];
    }

    public T ExtractDominating()
    {
        if (Count == 0) throw new InvalidOperationException("Heap is empty");
        T ret = _heap[0];
        _tail--;
        Swap(_tail, 0);
        BubbleDown(0);
        return ret;
    }

    private void BubbleDown(int i)
    {
        int dominatingNode = Dominating(i);
        if (dominatingNode == i) return;
        Swap(i, dominatingNode);
        BubbleDown(dominatingNode);
    }

    private int Dominating(int i)
    {
        int dominatingNode = i;
        dominatingNode = GetDominating(YoungChild(i), dominatingNode);
        dominatingNode = GetDominating(OldChild(i), dominatingNode);

        return dominatingNode;
    }

    private int GetDominating(int newNode, int dominatingNode)
    {
        if (newNode < _tail && !Dominates(_heap[dominatingNode], _heap[newNode]))
            return newNode;
        else
            return dominatingNode;
    }

    private void Swap(int i, int j)
    {
        T tmp = _heap[i];
        _heap[i] = _heap[j];
        _heap[j] = tmp;
    }

    private static int Parent(int i)
    {
        return (i + 1)/2 - 1;
    }

    private static int YoungChild(int i)
    {
        return (i + 1)*2 - 1;
    }

    private static int OldChild(int i)
    {
        return YoungChild(i) + 1;
    }

    private void Grow()
    {
        int newCapacity = _capacity*GrowFactor + MinGrow;
        var newHeap = new T[newCapacity];
        Array.Copy(_heap, newHeap, _capacity);
        _heap = newHeap;
        _capacity = newCapacity;
    }

    public IEnumerator<T> GetEnumerator()
    {
        return _heap.Take(Count).GetEnumerator();
    }

    IEnumerator IEnumerable.GetEnumerator()
    {
        return GetEnumerator();
    }
}

public class MaxHeap<T> : Heap<T>
{
    public MaxHeap()
        : this(Comparer<T>.Default)
    {
    }

    public MaxHeap(Comparer<T> comparer)
        : base(comparer)
    {
    }

    public MaxHeap(IEnumerable<T> collection, Comparer<T> comparer)
        : base(collection, comparer)
    {
    }

    public MaxHeap(IEnumerable<T> collection) : base(collection)
    {
    }

    protected override bool Dominates(T x, T y)
    {
        return Comparer.Compare(x, y) >= 0;
    }
}

public class MinHeap<T> : Heap<T>
{
    public MinHeap()
        : this(Comparer<T>.Default)
    {
    }

    public MinHeap(Comparer<T> comparer)
        : base(comparer)
    {
    }

    public MinHeap(IEnumerable<T> collection) : base(collection)
    {
    }

    public MinHeap(IEnumerable<T> collection, Comparer<T> comparer)
        : base(collection, comparer)
    {
    }

    protected override bool Dominates(T x, T y)
    {
        return Comparer.Compare(x, y) <= 0;
    }
}

Alcuni test:

[TestClass]
public class HeapTests
{
    [TestMethod]
    public void TestHeapBySorting()
    {
        var minHeap = new MinHeap<int>(new[] {9, 8, 4, 1, 6, 2, 7, 4, 1, 2});
        AssertHeapSort(minHeap, minHeap.OrderBy(i => i).ToArray());

        minHeap = new MinHeap<int> { 7, 5, 1, 6, 3, 2, 4, 1, 2, 1, 3, 4, 7 };
        AssertHeapSort(minHeap, minHeap.OrderBy(i => i).ToArray());

        var maxHeap = new MaxHeap<int>(new[] {1, 5, 3, 2, 7, 56, 3, 1, 23, 5, 2, 1});
        AssertHeapSort(maxHeap, maxHeap.OrderBy(d => -d).ToArray());

        maxHeap = new MaxHeap<int> {2, 6, 1, 3, 56, 1, 4, 7, 8, 23, 4, 5, 7, 34, 1, 4};
        AssertHeapSort(maxHeap, maxHeap.OrderBy(d => -d).ToArray());
    }

    private static void AssertHeapSort(Heap<int> heap, IEnumerable<int> expected)
    {
        var sorted = new List<int>();
        while (heap.Count > 0)
            sorted.Add(heap.ExtractDominating());

        Assert.IsTrue(sorted.SequenceEqual(expected));
    }
}

Eccone uno che ho appena scritto, forse non è così ottimizzato (usa solo un dizionario ordinato) ma semplice da capire. puoi inserire oggetti di diverso tipo, quindi nessuna coda generica.

using System;
using System.Diagnostics;
using System.Collections;
using System.Collections.Generic;

namespace PrioQueue
{
    public class PrioQueue
    {
        int total_size;
        SortedDictionary<int, Queue> storage;

        public PrioQueue ()
        {
            this.storage = new SortedDictionary<int, Queue> ();
            this.total_size = 0;
        }

        public bool IsEmpty ()
        {
            return (total_size == 0);
        }

        public object Dequeue ()
        {
            if (IsEmpty ()) {
                throw new Exception ("Please check that priorityQueue is not empty before dequeing");
            } else
                foreach (Queue q in storage.Values) {
                    // we use a sorted dictionary
                    if (q.Count > 0) {
                        total_size--;
                        return q.Dequeue ();
                    }
                }

                Debug.Assert(false,"not supposed to reach here. problem with changing total_size");

                return null; // not supposed to reach here.
        }

        // same as above, except for peek.

        public object Peek ()
        {
            if (IsEmpty ())
                throw new Exception ("Please check that priorityQueue is not empty before peeking");
            else
                foreach (Queue q in storage.Values) {
                    if (q.Count > 0)
                        return q.Peek ();
                }

                Debug.Assert(false,"not supposed to reach here. problem with changing total_size");

                return null; // not supposed to reach here.
        }

        public object Dequeue (int prio)
        {
            total_size--;
            return storage[prio].Dequeue ();
        }

        public void Enqueue (object item, int prio)
        {
            if (!storage.ContainsKey (prio)) {
                storage.Add (prio, new Queue ());
              }
            storage[prio].Enqueue (item);
            total_size++;

        }
    }
}

Ne ho trovato uno di Julian Bucknall sul suo blog qui - http://www.boyet.com /Articles/PriorityQueueCSharp3.html

L'abbiamo modificato leggermente in modo che gli elementi a bassa priorità sulla coda alla fine si "riempissero" verso l'alto nel tempo, in modo da non subire la fame.

Come menzionato in Collezioni Microsoft per .NET , Microsoft ha scritto (e condiviso online) 2 classi PriorityQueue interne in .NET Framework. Il loro codice è disponibile per la prova.

EDIT: come ha commentato @ mathusum-mut, c'è un bug in una delle classi interne PriorityQueue di Microsoft (la community SO, ovviamente, ha fornito delle correzioni): Bug nella PriorityQueue interna di Microsoft < T > ;?

Potresti trovare utile questa implementazione: http: / /www.codeproject.com/Articles/126751/Priority-queue-in-Csharp-with-help-of-heap-data-st.aspx

è generico e basato sulla struttura di dati heap

class PriorityQueue<T>
{
    IComparer<T> comparer;
    T[] heap;
    public int Count { get; private set; }
    public PriorityQueue() : this(null) { }
    public PriorityQueue(int capacity) : this(capacity, null) { }
    public PriorityQueue(IComparer<T> comparer) : this(16, comparer) { }
    public PriorityQueue(int capacity, IComparer<T> comparer)
    {
        this.comparer = (comparer == null) ? Comparer<T>.Default : comparer;
        this.heap = new T[capacity];
    }
    public void push(T v)
    {
        if (Count >= heap.Length) Array.Resize(ref heap, Count * 2);
        heap[Count] = v;
        SiftUp(Count++);
    }
    public T pop()
    {
        var v = top();
        heap[0] = heap[--Count];
        if (Count > 0) SiftDown(0);
        return v;
    }
    public T top()
    {
        if (Count > 0) return heap[0];
        throw new InvalidOperationException("优先队列为空");
    }
    void SiftUp(int n)
    {
        var v = heap[n];
        for (var n2 = n / 2; n > 0 && comparer.Compare(v, heap[n2]) > 0; n = n2, n2 /= 2) heap[n] = heap[n2];
        heap[n] = v;
    }
    void SiftDown(int n)
    {
        var v = heap[n];
        for (var n2 = n * 2; n2 < Count; n = n2, n2 *= 2)
        {
            if (n2 + 1 < Count && comparer.Compare(heap[n2 + 1], heap[n2]) > 0) n2++;
            if (comparer.Compare(v, heap[n2]) >= 0) break;
            heap[n] = heap[n2];
        }
        heap[n] = v;
    }
}

facile.

Usa un traduttore da Java a C # sull'implementazione Java (java.util.PriorityQueue) nel framework Collezioni Java, oppure usa in modo più intelligente l'algoritmo e il codice core e collegalo a una classe C # di tua creazione che aderisce al API del framework Collezioni C # per le code, o almeno le raccolte.

AlgoKit

Ho scritto una libreria open source chiamata AlgoKit , disponibile tramite NuGet . Contiene:

  • Cumuli impliciti di d-ary (ArrayHeap),
  • Cumuli binomiali ,
  • Accoppiamento di cumuli .

Il codice è stato ampiamente testato. Consiglio vivamente di provarlo.

Esempio

var comparer = Comparer<int>.Default;
var heap = new PairingHeap<int, string>(comparer);

heap.Add(3, "your");
heap.Add(5, "of");
heap.Add(7, "disturbing.");
heap.Add(2, "find");
heap.Add(1, "I");
heap.Add(6, "faith");
heap.Add(4, "lack");

while (!heap.IsEmpty)
    Console.WriteLine(heap.Pop().Value);

Perché quei tre cumuli?

La scelta ottimale di implementazione dipende fortemente dall'input & # 8212; come mostrano Larkin, Sen e Tarjan in Uno studio empirico di base sulle code di priorità , arXiv: 1403.0252v1 [cs.DS] . Hanno testato i cumuli impliciti di d-ary, i cumuli di accoppiamento, i cumuli di Fibonacci, i cumuli binomiali, i cumuli di d-ary espliciti, i cumuli di accoppiamento di rango, i cumuli di terremoti, i cumuli di violazione, i mucchi deboli rilassati di grado e i cumuli di Fibonacci rigorosi.

AlgoKit presenta tre tipi di heap che sembrano essere i più efficienti tra quelli testati.

Suggerimento a scelta

Per un numero relativamente piccolo di elementi, potresti essere interessato all'utilizzo di cumuli impliciti, in particolare cumuli quaternari (4-ary impliciti). Nel caso di operare su heap di dimensioni maggiori, le strutture ammortizzate come i cumuli binomiali e i cumuli di accoppiamento dovrebbero funzionare meglio.

Ecco un'altra implementazione del team di NGenerics:

NGenerics PriorityQueue

Di recente ho avuto lo stesso problema e ho finito per creare un pacchetto NuGet per questo.

Questo implementa una coda di priorità standard basata su heap. Ha anche tutte le solite prelibatezze delle raccolte BCL: ICollection<T> e IReadOnlyCollection<T> implementazione, supporto personalizzato IComparer<T>, capacità di specificare una capacità iniziale e un DebuggerTypeProxy per rendere la raccolta più facile da lavorare nel debugger .

Esiste anche una versione Inline che ne installa solo una singola. cs nel tuo progetto (utile se vuoi evitare di assumere dipendenze visibili dall'esterno).

Ulteriori informazioni sono disponibili nella pagina github .

Una semplice implementazione Max Heap.

https://github.com/bharathkumarms/AlgorithmsMadeEasy/blo /master/AlgorithmsMadeEasy/MaxHeap.cs

using System;
using System.Collections.Generic;
using System.Linq;

namespace AlgorithmsMadeEasy
{
    class MaxHeap
    {
        private static int capacity = 10;
        private int size = 0;
        int[] items = new int[capacity];

        private int getLeftChildIndex(int parentIndex) { return 2 * parentIndex + 1; }
        private int getRightChildIndex(int parentIndex) { return 2 * parentIndex + 2; }
        private int getParentIndex(int childIndex) { return (childIndex - 1) / 2; }

        private int getLeftChild(int parentIndex) { return this.items[getLeftChildIndex(parentIndex)]; }
        private int getRightChild(int parentIndex) { return this.items[getRightChildIndex(parentIndex)]; }
        private int getParent(int childIndex) { return this.items[getParentIndex(childIndex)]; }

        private bool hasLeftChild(int parentIndex) { return getLeftChildIndex(parentIndex) < size; }
        private bool hasRightChild(int parentIndex) { return getRightChildIndex(parentIndex) < size; }
        private bool hasParent(int childIndex) { return getLeftChildIndex(childIndex) > 0; }

        private void swap(int indexOne, int indexTwo)
        {
            int temp = this.items[indexOne];
            this.items[indexOne] = this.items[indexTwo];
            this.items[indexTwo] = temp;
        }

        private void hasEnoughCapacity()
        {
            if (this.size == capacity)
            {
                Array.Resize(ref this.items,capacity*2);
                capacity *= 2;
            }
        }

        public void Add(int item)
        {
            this.hasEnoughCapacity();
            this.items[size] = item;
            this.size++;
            heapifyUp();
        }

        public int Remove()
        {
            int item = this.items[0];
            this.items[0] = this.items[size-1];
            this.items[this.size - 1] = 0;
            size--;
            heapifyDown();
            return item;
        }

        private void heapifyUp()
        {
            int index = this.size - 1;
            while (hasParent(index) && this.items[index] > getParent(index))
            {
                swap(index, getParentIndex(index));
                index = getParentIndex(index);
            }
        }

        private void heapifyDown()
        {
            int index = 0;
            while (hasLeftChild(index))
            {
                int bigChildIndex = getLeftChildIndex(index);
                if (hasRightChild(index) && getLeftChild(index) < getRightChild(index))
                {
                    bigChildIndex = getRightChildIndex(index);
                }

                if (this.items[bigChildIndex] < this.items[index])
                {
                    break;
                }
                else
                {
                    swap(bigChildIndex,index);
                    index = bigChildIndex;
                }
            }
        }
    }
}

/*
Calling Code:
    MaxHeap mh = new MaxHeap();
    mh.Add(10);
    mh.Add(5);
    mh.Add(2);
    mh.Add(1);
    mh.Add(50);
    int maxVal  = mh.Remove();
    int newMaxVal = mh.Remove();
*/

La seguente implementazione di PriorityQueue utilizza SortedSet dalla libreria di sistema.

using System;
using System.Collections.Generic;

namespace CDiggins
{
    interface IPriorityQueue<T, K> where K : IComparable<K>
    {
        bool Empty { get; }
        void Enqueue(T x, K key);
        void Dequeue();
        T Top { get; }
    }

    class PriorityQueue<T, K> : IPriorityQueue<T, K> where K : IComparable<K>
    {
        SortedSet<Tuple<T, K>> set;

        class Comparer : IComparer<Tuple<T, K>> {
            public int Compare(Tuple<T, K> x, Tuple<T, K> y) {
                return x.Item2.CompareTo(y.Item2);
            }
        }

        PriorityQueue() { set = new SortedSet<Tuple<T, K>>(new Comparer()); }
        public bool Empty { get { return set.Count == 0;  } }
        public void Enqueue(T x, K key) { set.Add(Tuple.Create(x, key)); }
        public void Dequeue() { set.Remove(set.Max); }
        public T Top { get { return set.Max.Item1; } }
    }
}
Autorizzato sotto: CC-BY-SA insieme a attribuzione
Non affiliato a StackOverflow
scroll top