Pergunta

Eu tenho uma classe que pode ser decorada com um conjunto de modelos complementares para fornecer funcionalidades adicionais.Cada complemento precisa ser capaz de chamar a classe base e o usuário precisa poder chamar a classe base (diretamente ou usando CMyClass como proxy).Infelizmente, o compilador não consegue dizer qual classe base estou chamando e recebo erros de acesso ambíguos.

template< class T >
class AddOn_A : public T
{
public: 
    AddOn_A( int x ) : T( x ) 
    {};

    int AddOne()
    {
        T* pT = static_cast< T* >( this );
        return pT->GetValue() + 1;
    };
};

template< class T >
class AddOn_B : public T
{
public: 
    AddOn_B( int x ) : T( x ) 
    {};

    int AddTwo()
    {
        T* pT = static_cast< T* >( this );
        return pT->GetValue() + 2;
    };
};

class CBase
{
public:
    explicit CBase( int x ) : x_( x ) 
    {
    };

    int GetValue()
    {
        return x_;
    };

private:
    int x_;
};

// define an empty AddOn
template< class > struct empty {};

// forward declaration and Add-On defaults
template< template< class > class AddOn1 = empty,
          template< class > class AddOn2 = empty,
          template< class > class AddOn3 = empty >
class CMyClass;

// specialized template for the default case
template<> class CMyClass< empty, empty, empty > : public CBase
{
public:
    CMyClass( int x ) : CBase( x ) 
    {};
};

// actual definition
template< template< class > class AddOn1,
          template< class > class AddOn2,
          template< class > class AddOn3 >
class CMyClass : public AddOn1< CBase >,
                 public CMyClass< AddOn2, AddOn3 >
{
public:
    CMyClass( int x ) : AddOn1< CBase >( x ),
                        CMyClass< AddOn2, AddOn3 >( x )
    {};
};

int _tmain( int argc, _TCHAR* argv[] )
{
    CMyClass< AddOn_A > A( 100 );

    // error C2385: ambiguous access of 'GetValue'
    //     1>        could be the 'GetValue' in base 'CBase'
    //     1>        or could be the 'GetValue' in base 'CBase'
    _ASSERT( A.GetValue() == 100 );

    // error C2385: ambiguous access of 'GetValue'
    //     1>        could be the 'GetValue' in base 'CBase'
    //     1>        or could be the 'GetValue' in base 'CBase'
    _ASSERT( A.AddOne() == A.GetValue() + 1 );

    // works
    _ASSERT( A.AddOne() == 101 );

    CMyClass< AddOn_A, AddOn_B > AB( 100 );

    // same errors as above
    _ASSERT( AB.GetValue() == 100 );

    // same errors as above
    _ASSERT( AB.AddTwo() == AB.GetValue() + 2 );

    // works
    _ASSERT( AB.AddTwo() == 102 );

    return 0;
}

Alguém pode apontar o que posso estar fazendo de errado?

Obrigado, Paulh

Foi útil?

Solução

Bem, já que lancei a abordagem Decorator, é melhor :)

EDITAR:vamos adicionar os AddOnValues ​​para resolver esse também

O problema aqui é a multi-herança.Traçar tal diagrama não é fácil, mas se você olhar com atenção verá que CMyClass<AddOn_A> herda duas vezes de CBase.

  1. CMyClass<AddOn_A> <-- AddOn_A<CBase> <-- CBase
  2. CMyClass<AddOn_A> <-- CMyclass<empty,empty,empty> <-- CBase

O problema é que você usou uma abordagem política, em vez de uma abordagem Decoradora.Em uma abordagem Decorator adequada, a hierarquia é estritamente linear e você tem apenas um parâmetro de modelo por vez.Vamos à base:

// Note that the static_cast are completely unnecessary
// If you inherit from T then you can freely enjoy
// its public and protected methods
template< class T >
class AddOn_A : public T
{
public:
    enum { AddOnValues = T::AddOnValues | 0x01 }; // this hides T::AddOnValues

    AddOn_A( int x ) : T( x ) {};

    int AddOne()
    {
        return this->GetValue() + 1;
    };
};

template< class T >
class AddOn_B : public T
{
public:
    enum { AddOnValues = T::AddOnValues | 0x02 }; // this hides T::AddOnValues

    AddOn_B( int x ) : T( x ) {};

    int AddTwo()
    {
        return this->GetValue() + 2;
    };
};

class CBase
{
public:
    enum { AddOnValues = 0x00 };

    explicit CBase( int x ) : x_( x ) {}
    virtual ~CBase() {} // virtual destructor for inheritance

    int GetValue() const { return x_; }; // const method

private:
    int x_;
};

Agora podemos chegar ao uso real!

// First, the typedef approach
typedef AddOn_B< AddOn_A< CBase > > CMyClass;
CMyClass myObject(3);
std::cout << myObject.GetValue() << std::endl;
std::cout << myObject.AddOne() << std::endl;
std::cout << myObject.AddTwo() << std::endl;

Muito fácil, não é?A desvantagem óbvia é que você não adiciona funcionalidade lá...

 // I want more!
 template < class T >
 class CMyClassImpl: public T
 {
   // Whatever you want
 };

 CMyClassImpl< AddOn_B< AddOn_A< CBase > > > myObject(3);

OK...não é tão bonito, eu acho...Melhor ainda ?Bem, podemos apenas usar um invólucro!

 // Even better
 template <>
 class CMyClass: public CMyClassImpl < CBase > {};

 template < template <class> class AddOn1>
 class CMyClass: public CMyClassImpl <AddOn1 < CBase > > {};

 template < template <class> class AddOn1,
            template <class> class AddOn2 >
 class CMyClass: public CMyClassImpl < AddOn2 < AddOn1< CBase > > > {};

 template < template <class> class AddOn1,
            template <class> class AddOn2,
            template <class> class AddOn3 >
 class CMyClass: public CMyClassImpl < AddOn3 < AddOn2< AddOn1< CBase > > > > {};

 // Go on with as much specializations as you wish

 CMyClass < AddOn_A, AddOn_B > myObject(3);

Claro, a última solução economiza a digitação no site de chamada, mas você precisa realmente trabalhar na sua aula :)

Além disso, você tem que repetir os vários construtores em cada etapa da herança, o que posso provar rapidamente...tedioso.

Existem macros de pré-processador por aí, mas...da última vez, levei cerca de 500 linhas para gerar algo bastante simples, então não se preocupe e digite, sério :)

Licenciado em: CC-BY-SA com atribuição
Não afiliado a StackOverflow
scroll top