Pergunta

In an algorithm I have to calculate the 75th percentile of a data set whenever I add a value. Right now I am doing this:

  1. Get value x
  2. Insert x in an already sorted array at the back
  3. swap x down until the array is sorted
  4. Read the element at position array[array.size * 3/4]

Point 3 is O(n), and the rest is O(1), but this is still quite slow, especially if the array gets larger. Is there any way to optimize this?

UPDATE

Thanks Nikita! Since I am using C++ this is the solution easiest to implement. Here is the code:

template<class T>
class IterativePercentile {
public:
  /// Percentile has to be in range [0, 1(
  IterativePercentile(double percentile)
    : _percentile(percentile)
  { }

  // Adds a number in O(log(n))
  void add(const T& x) {
    if (_lower.empty() || x <= _lower.front()) {
      _lower.push_back(x);
      std::push_heap(_lower.begin(), _lower.end(), std::less<T>());
    } else {
      _upper.push_back(x);
      std::push_heap(_upper.begin(), _upper.end(), std::greater<T>());
    }

    unsigned size_lower = (unsigned)((_lower.size() + _upper.size()) * _percentile) + 1;
    if (_lower.size() > size_lower) {
      // lower to upper
      std::pop_heap(_lower.begin(), _lower.end(), std::less<T>());
      _upper.push_back(_lower.back());
      std::push_heap(_upper.begin(), _upper.end(), std::greater<T>());
      _lower.pop_back();
    } else if (_lower.size() < size_lower) {
      // upper to lower
      std::pop_heap(_upper.begin(), _upper.end(), std::greater<T>());
      _lower.push_back(_upper.back());
      std::push_heap(_lower.begin(), _lower.end(), std::less<T>());
      _upper.pop_back();
    }            
  }

  /// Access the percentile in O(1)
  const T& get() const {
    return _lower.front();
  }

  void clear() {
    _lower.clear();
    _upper.clear();
  }

private:
  double _percentile;
  std::vector<T> _lower;
  std::vector<T> _upper;
};
Foi útil?

Solução

You can do it with two heaps. Not sure if there's a less 'contrived' solution, but this one provides O(logn) time complexity and heaps are also included in standard libraries of most programming languages.

First heap (heap A) contains smallest 75% elements, another heap (heap B) - the rest (biggest 25%). First one has biggest element on the top, second one - smallest.

  1. Adding element.

See if new element x is <= max(A). If it is, add it to heap A, otherwise - to heap B.
Now, if we added x to heap A and it became too big (holds more than 75% of elements), we need to remove biggest element from A (O(logn)) and add it to heap B (also O(logn)).
Similar if heap B became too big.

  1. Finding "0.75 median"

Just take the largest element from A (or smallest from B). Requires O(logn) or O(1) time, depending on heap implementation.

edit
As Dolphin noted, we need to specify precisely how big each heap should be for every n (if we want precise answer). For example, if size(A) = floor(n * 0.75) and size(B) is the rest, then, for every n > 0, array[array.size * 3/4] = min(B).

Outras dicas

A simple Order Statistics Tree is enough for this.

A balanced version of this tree supports O(logn) time insert/delete and access by Rank. So you not only get the 75% percentile, but also the 66% or 50% or whatever you need without having to change your code.

If you access the 75% percentile frequently, but only insert less frequently, you can always cache the 75% percentile element during an insert/delete operation.

Most standard implementations (like Java's TreeMap) are order statistic trees.

You can use binary search to do find the correct position in O(log n). However, shifting the array up is still O(n).

Here is a javaScript solution . Copy-paste it in browser console and it works . $scores contains the List of scores and , $percentilegives the n-th percentile of the list . So 75th percentile is 76.8 and 99 percentile is 87.9.

function get_percentile($percentile, $array) {
    $array = $array.sort();
    $index = ($percentile/100) * $array.length;
    if (Math.floor($index) === $index) {
         $result = ($array[$index-1] + $array[$index])/2;
    }
    else {
        $result = $array[Math.floor($index)];
    }
    return $result;
}

$scores = [22.3, 32.4, 12.1, 54.6, 76.8, 87.3, 54.6, 45.5, 87.9];

get_percentile(75, $scores);
get_percentile(90, $scores);

If you have a known set of values, following will be very fast:

Create a large array of integers (even bytes will work) with number of elements equal to maximum value of your data. For example, if the maximum value of t is 100,000 create an array

int[] index = new int[100000]; // 400kb

Now iterate over the entire set of values, as

for each (int t : set_of_values) {
  index[t]++;
}

// You can do a try catch on ArrayOutOfBounds just in case :)

Now calculate percentile as

int sum = 0, i = 0;
while (sum < 0.9*set_of_values.length) {
  sum += index[i++];
}

return i;

You can also consider using a TreeMap instead of array, if the values don't confirm to these restrictions.

Licenciado em: CC-BY-SA com atribuição
Não afiliado a StackOverflow
scroll top