假设我们有 0.33,我们需要输出“1/3”。
如果我们有“0.4”,我们需要输出“2/5”。

其想法是使其具有人类可读性,使用户能够理解“y 中的 x 部分”,从而更好地理解数据。

我知道百分比是一个很好的替代品,但我想知道是否有一种简单的方法可以做到这一点?

有帮助吗?

解决方案

我找到了大卫·爱普斯坦的 找到给定实数的有理近似值 C 代码正是您所要求的。它基于连分数理论,速度非常快且相当紧凑。

我已经使用了针对特定分子和分母限制定制的版本。

/*
** find rational approximation to given real number
** David Eppstein / UC Irvine / 8 Aug 1993
**
** With corrections from Arno Formella, May 2008
**
** usage: a.out r d
**   r is real number to approx
**   d is the maximum denominator allowed
**
** based on the theory of continued fractions
** if x = a1 + 1/(a2 + 1/(a3 + 1/(a4 + ...)))
** then best approximation is found by truncating this series
** (with some adjustments in the last term).
**
** Note the fraction can be recovered as the first column of the matrix
**  ( a1 1 ) ( a2 1 ) ( a3 1 ) ...
**  ( 1  0 ) ( 1  0 ) ( 1  0 )
** Instead of keeping the sequence of continued fraction terms,
** we just keep the last partial product of these matrices.
*/

#include <stdio.h>

main(ac, av)
int ac;
char ** av;
{
    double atof();
    int atoi();
    void exit();

    long m[2][2];
    double x, startx;
    long maxden;
    long ai;

    /* read command line arguments */
    if (ac != 3) {
        fprintf(stderr, "usage: %s r d\n",av[0]);  // AF: argument missing
        exit(1);
    }
    startx = x = atof(av[1]);
    maxden = atoi(av[2]);

    /* initialize matrix */
    m[0][0] = m[1][1] = 1;
    m[0][1] = m[1][0] = 0;

    /* loop finding terms until denom gets too big */
    while (m[1][0] *  ( ai = (long)x ) + m[1][1] <= maxden) {
        long t;
        t = m[0][0] * ai + m[0][1];
        m[0][1] = m[0][0];
        m[0][0] = t;
        t = m[1][0] * ai + m[1][1];
        m[1][1] = m[1][0];
        m[1][0] = t;
        if(x==(double)ai) break;     // AF: division by zero
        x = 1/(x - (double) ai);
        if(x>(double)0x7FFFFFFF) break;  // AF: representation failure
    } 

    /* now remaining x is between 0 and 1/ai */
    /* approx as either 0 or 1/m where m is max that will fit in maxden */
    /* first try zero */
    printf("%ld/%ld, error = %e\n", m[0][0], m[1][0],
           startx - ((double) m[0][0] / (double) m[1][0]));

    /* now try other possibility */
    ai = (maxden - m[1][1]) / m[1][0];
    m[0][0] = m[0][0] * ai + m[0][1];
    m[1][0] = m[1][0] * ai + m[1][1];
    printf("%ld/%ld, error = %e\n", m[0][0], m[1][0],
           startx - ((double) m[0][0] / (double) m[1][0]));
}

其他提示

从Python 2.6开始有 fractions 模块。

(引用自文档。)

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)

>>> from math import pi, cos
>>> Fraction.from_float(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction.from_float(cos(pi/3)).limit_denominator()
Fraction(1, 2)

如果输出是为了让人类读者快速了解结果的顺序,则返回“113/211”之类的内容是没有意义的,因此输出应限制为使用一位数字(可能是 1/ 10 和 9/10)。如果是这样,您可以观察到只有 27 个 不同的 分数。

由于生成输出的基础数学永远不会改变,解决方案可能是简单地对二叉搜索树进行硬编码,以便该函数最多执行 log(27) ~= 4 3/4 比较。这是经过测试的 C 版本代码

char *userTextForDouble(double d, char *rval)
{
    if (d == 0.0)
        return "0";

    // TODO: negative numbers:if (d < 0.0)...
    if (d >= 1.0)
        sprintf(rval, "%.0f ", floor(d));
    d = d-floor(d); // now only the fractional part is left

    if (d == 0.0)
        return rval;

    if( d < 0.47 )
    {
        if( d < 0.25 )
        {
            if( d < 0.16 )
            {
                if( d < 0.12 ) // Note: fixed from .13
                {
                    if( d < 0.11 )
                        strcat(rval, "1/10"); // .1
                    else
                        strcat(rval, "1/9"); // .1111....
                }
                else // d >= .12
                {
                    if( d < 0.14 )
                        strcat(rval, "1/8"); // .125
                    else
                        strcat(rval, "1/7"); // .1428...
                }
            }
            else // d >= .16
            {
                if( d < 0.19 )
                {
                    strcat(rval, "1/6"); // .1666...
                }
                else // d > .19
                {
                    if( d < 0.22 )
                        strcat(rval, "1/5"); // .2
                    else
                        strcat(rval, "2/9"); // .2222...
                }
            }
        }
        else // d >= .25
        {
            if( d < 0.37 ) // Note: fixed from .38
            {
                if( d < 0.28 ) // Note: fixed from .29
                {
                    strcat(rval, "1/4"); // .25
                }
                else // d >=.28
                {
                    if( d < 0.31 )
                        strcat(rval, "2/7"); // .2857...
                    else
                        strcat(rval, "1/3"); // .3333...
                }
            }
            else // d >= .37
            {
                if( d < 0.42 ) // Note: fixed from .43
                {
                    if( d < 0.40 )
                        strcat(rval, "3/8"); // .375
                    else
                        strcat(rval, "2/5"); // .4
                }
                else // d >= .42
                {
                    if( d < 0.44 )
                        strcat(rval, "3/7"); // .4285...
                    else
                        strcat(rval, "4/9"); // .4444...
                }
            }
        }
    }
    else
    {
        if( d < 0.71 )
        {
            if( d < 0.60 )
            {
                if( d < 0.55 ) // Note: fixed from .56
                {
                    strcat(rval, "1/2"); // .5
                }
                else // d >= .55
                {
                    if( d < 0.57 )
                        strcat(rval, "5/9"); // .5555...
                    else
                        strcat(rval, "4/7"); // .5714
                }
            }
            else // d >= .6
            {
                if( d < 0.62 ) // Note: Fixed from .63
                {
                    strcat(rval, "3/5"); // .6
                }
                else // d >= .62
                {
                    if( d < 0.66 )
                        strcat(rval, "5/8"); // .625
                    else
                        strcat(rval, "2/3"); // .6666...
                }
            }
        }
        else
        {
            if( d < 0.80 )
            {
                if( d < 0.74 )
                {
                    strcat(rval, "5/7"); // .7142...
                }
                else // d >= .74
                {
                    if(d < 0.77 ) // Note: fixed from .78
                        strcat(rval, "3/4"); // .75
                    else
                        strcat(rval, "7/9"); // .7777...
                }
            }
            else // d >= .8
            {
                if( d < 0.85 ) // Note: fixed from .86
                {
                    if( d < 0.83 )
                        strcat(rval, "4/5"); // .8
                    else
                        strcat(rval, "5/6"); // .8333...
                }
                else // d >= .85
                {
                    if( d < 0.87 ) // Note: fixed from .88
                    {
                        strcat(rval, "6/7"); // .8571
                    }
                    else // d >= .87
                    {
                        if( d < 0.88 ) // Note: fixed from .89
                        {
                            strcat(rval, "7/8"); // .875
                        }
                        else // d >= .88
                        {
                            if( d < 0.90 )
                                strcat(rval, "8/9"); // .8888...
                            else
                                strcat(rval, "9/10"); // .9
                        }
                    }
                }
            }
        }
    }

    return rval;
}

以下链接解释了将小数转换为分数背后的数学原理:

http://www.webmath.com/dec2fract.html

下面是一个示例函数,说明如何使用 VB 实际执行此操作(来自 www.freevbcode.com/ShowCode.asp?ID=582):

Public Function Dec2Frac(ByVal f As Double) As String

   Dim df As Double
   Dim lUpperPart As Long
   Dim lLowerPart As Long

   lUpperPart = 1
   lLowerPart = 1

   df = lUpperPart / lLowerPart
   While (df <> f)
      If (df < f) Then
         lUpperPart = lUpperPart + 1
      Else
         lLowerPart = lLowerPart + 1
         lUpperPart = f * lLowerPart
      End If
      df = lUpperPart / lLowerPart
   Wend
Dec2Frac = CStr(lUpperPart) & "/" & CStr(lLowerPart)
End Function

(来自谷歌搜索:将小数转换为分数,将小数转换为分数代码)

您可能想阅读 每个计算机科学家都应该了解的浮点运算知识.

您必须通过乘以一个大数来指定一定的精度:

3.141592 * 1000000 = 3141592

那么你可以做一个分数:

3 + (141592 / 1000000)

并通过 GCD 减少...

3 + (17699 / 125000)

但没有办法得到 故意的 分数出来。你可能想要 总是 在整个代码中使用分数——只要记住尽可能减少分数以避免溢出!

以下是 devinmoore 建议的 VB 代码的 Perl 和 Javascript 版本:

珀尔:

sub dec2frac {
    my $d = shift;

    my $df  = 1;
    my $top = 1;
    my $bot = 1;

    while ($df != $d) {
      if ($df < $d) {
        $top += 1;
      }
      else {
         $bot += 1;
         $top = int($d * $bot);
      }
      $df = $top / $bot;
   }
   return "$top/$bot";
}

和几乎相同的 JavaScript:

function dec2frac(d) {

    var df = 1;
    var top = 1;
    var bot = 1;

    while (df != d) {
        if (df < d) {
            top += 1;
        }
        else {
            bot += 1;
            top = parseInt(d * bot);
        }
        df = top / bot;
    }
    return top + '/' + bot;
}

C# 实现

/// <summary>
/// Represents a rational number
/// </summary>
public struct Fraction
{
    public int Numerator;
    public int Denominator;

    /// <summary>
    /// Constructor
    /// </summary>
    public Fraction(int numerator, int denominator)
    {
        this.Numerator = numerator;
        this.Denominator = denominator;
    }

    /// <summary>
    /// Approximates a fraction from the provided double
    /// </summary>
    public static Fraction Parse(double d)
    {
        return ApproximateFraction(d);
    }

    /// <summary>
    /// Returns this fraction expressed as a double, rounded to the specified number of decimal places.
    /// Returns double.NaN if denominator is zero
    /// </summary>
    public double ToDouble(int decimalPlaces)
    {
        if (this.Denominator == 0)
            return double.NaN;

        return System.Math.Round(
            Numerator / (double)Denominator,
            decimalPlaces
        );
    }


    /// <summary>
    /// Approximates the provided value to a fraction.
    /// http://stackoverflow.com/questions/95727/how-to-convert-floats-to-human-readable-fractions
    /// </summary>
    private static Fraction ApproximateFraction(double value)
    {
        const double EPSILON = .000001d;

        int n = 1;  // numerator
        int d = 1;  // denominator
        double fraction = n / d;

        while (System.Math.Abs(fraction - value) > EPSILON)
        {
            if (fraction < value)
            {
                n++;
            }
            else
            {
                d++;
                n = (int)System.Math.Round(value * d);
            }

            fraction = n / (double)d;
        }

        return new Fraction(n, d);
    }
}

斯特恩布罗科特树 引入了一种相当自然的方法来用简单分母的分数来近似实数。

部分问题在于,如此多的分数实际上并不容易被解释为分数。例如。0.33 不是 1/3,而是 33/100。但是,如果您还记得您的小学训练,那么有一个将十进制值转换为分数的过程,但是它不太可能给您想要的东西,因为大多数时候十进制数不是存储在 0.33,而是存储在 0.329999999999998 等。

帮自己一个忙,不要为此烦恼,但如果您需要,可以执行以下操作:

将原始值乘以 10,直到删除小数部分。保留该数字,并将其用作除数。然后通过寻找共同点进行一系列简化。

所以 0.4 就是 4/10。然后,您将寻找从低值(可能是素数)开始的公约数。从 2 开始,您可以通过检查除法下限是否与除法本身相同来查看 2 是否能整除分子和分母。

floor(5/2) = 2
5/2 = 2.5

所以 5 不能整除 2。然后你检查下一个数字,比如 3。这样做直到达到或高于较小数字的平方根。

这样做之后你需要

这不是一个“算法”,只是一个Python解决方案:http://docs.python.org/library/fractions.html

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)

“假设我们有 0.33,我们需要输出“1/3”。”

您期望“解决方案”的精度是多少?0.33 不等于 1/3。您如何识别“好”(易于阅读)的答案?

无论如何,可能的算法可能是:

如果您希望找到 X/Y 形式的最接近分数,其中 Y 小于 10,那么您可以循环遍历所有 9 个可能的 Y,为每个 Y 计算 X,然后选择最准确的一个。

R 中的内置解决方案:

library(MASS)
fractions(0.666666666)
## [1] 2/3

这使用连分数法并且具有可选的 cyclesmax.denominator 调整精度的参数。

你必须弄清楚你愿意接受什么程度的错误。并非所有小数都会化简为简单分数。我可能会选择一个容易整除的数字,例如 60,并计算出最接近该值的 60 分之一,然后简化分数。

您可以使用以下步骤在任何编程语言中执行此操作:

  1. 乘以和除以 10^x,其中 x 是确保数字不留小数位所需的 10 次幂。例子:将 0.33 乘以 10^2 = 100 得到 33,再除以 10^2 = 100 得到 33/100
  2. 通过因式分解减少所得分数的分子和分母,直到不能再从结果中获得整数为止。
  3. 由此产生的约简分数应该就是您的答案。

例子:0.2 = 0.2 x 10^1/10^1 = 2/10 = 1/5

所以,这可以理解为“五分之一”

一种解决方案是首先将所有数字存储为有理数。有用于有理数算术的库(例如 良好生产规范)。如果使用面向对象语言,您也许可以只使用有理数类库来替换您的数字类。

金融程序等将使用这样的解决方案来进行精确计算并保留使用普通浮点数可能会丢失的精度。

当然,它会慢很多,所以对你来说可能不实用。取决于您需要执行多少计算以及精度对您来说有多重要。

a = rational(1);
b = rational(3);
c = a / b;

print (c.asFraction)  --->  "1/3"
print (c.asFloat) ----> "0.333333"

我认为最好的方法是首先将浮点值转换为 ASCII 表示形式。在 C++ 中,您可以使用 ostringstream,或者在 C 中,您可以使用 sprintf。在 C++ 中它是这样的:

ostringstream oss;
float num;
cin >> num;
oss << num;
string numStr = oss.str();
int i = numStr.length(), pow_ten = 0;
while (i > 0) {
    if (numStr[i] == '.')
        break;
    pow_ten++;
    i--;
}
for (int j = 1; j < pow_ten; j++) {
    num *= 10.0;
}
cout << static_cast<int>(num) << "/" << pow(10, pow_ten - 1) << endl;

在直 C 中可以采取类似的方法。

之后,您需要检查分数是否为最低项。该算法将给出精确的答案,即0.33将输出“ 33/100”,而不是“ 1/3”。但是,0.4将给出“ 4/10”,而当降低到最低时,将是“ 2/5”。这可能不如Eppstein的解决方案强大,但我相信这更简单。

Ruby 已经有一个内置的解决方案:

0.33.rationalize.to_s # => "33/100"
0.4.rationalize.to_s # => "2/5"

在 Rails 中,ActiveRecord 数值属性也可以转换:

product.size = 0.33
product.size.to_r.to_s # => "33/100"

用 C++ 回答,假设您有一个“BigInt”类,它可以存储无限大小的整数。

您可以使用“unsigned long long”代替,但它仅适用于某些值。

void GetRational(double val)
{
    if (val == val+1) // Inf
        throw "Infinite Value";
    if (val != val) // NaN
        throw "Undefined Value";

    bool sign = false;
    BigInt enumerator = 0;
    BigInt denominator = 1;

    if (val < 0)
    {
        val = -val;
        sign = true;
    }

    while (val > 0)
    {
        unsigned int intVal = (unsigned int)val;
        val -= intVal;
        enumerator += intVal;
        val *= 2;
        enumerator *= 2;
        denominator *= 2;
    }

    BigInt gcd = GCD(enumerator,denominator);
    enumerator /= gcd;
    denominator /= gcd;

    Print(sign? "-":"+");
    Print(enumerator);
    Print("/");
    Print(denominator);

    // Or simply return {sign,enumerator,denominator} as you wish
}

顺便说一句,GetRational(0.0) 将返回“+0/1”,因此您可能想单独处理这种情况。

附:我已经在我自己的“RationalNum”类中使用这段代码好几年了,并且它已经过彻底的测试。

该算法由 伊恩·理查兹 / 约翰·肯尼迪 不仅返回漂亮的分数,而且在速度方面也表现得非常好。这是 C# 代码,取自 这个答案 由我。

它可以处理所有 double 除了 NaN 和 +/- 无穷大等特殊值之外的值,如果需要,您必须添加这些值。

它返回一个 new Fraction(numerator, denominator). 。替换为您自己的类型。

有关更多示例值以及与其他算法的比较, 到这里

public Fraction RealToFraction(double value, double accuracy)
{
    if (accuracy <= 0.0 || accuracy >= 1.0)
    {
        throw new ArgumentOutOfRangeException("accuracy", "Must be > 0 and < 1.");
    }

    int sign = Math.Sign(value);

    if (sign == -1)
    {
        value = Math.Abs(value);
    }

    // Accuracy is the maximum relative error; convert to absolute maxError
    double maxError = sign == 0 ? accuracy : value * accuracy;

    int n = (int) Math.Floor(value);
    value -= n;

    if (value < maxError)
    {
        return new Fraction(sign * n, 1);
    }

    if (1 - maxError < value)
    {
        return new Fraction(sign * (n + 1), 1);
    }

    double z = value;
    int previousDenominator = 0;
    int denominator = 1;
    int numerator;

    do
    {
        z = 1.0 / (z - (int) z);
        int temp = denominator;
        denominator = denominator * (int) z + previousDenominator;
        previousDenominator = temp;
        numerator = Convert.ToInt32(value * denominator);
    }
    while (Math.Abs(value - (double) numerator / denominator) > maxError && z != (int) z);

    return new Fraction((n * denominator + numerator) * sign, denominator);
}

该算法返回的示例值:

Accuracy: 1.0E-3      | Richards                     
Input                 | Result           Error       
======================| =============================
   3                  |       3/1          0         
   0.999999           |       1/1         1.0E-6     
   1.000001           |       1/1        -1.0E-6     
   0.50 (1/2)         |       1/2          0         
   0.33... (1/3)      |       1/3          0         
   0.67... (2/3)      |       2/3          0         
   0.25 (1/4)         |       1/4          0         
   0.11... (1/9)      |       1/9          0         
   0.09... (1/11)     |       1/11         0         
   0.62... (307/499)  |       8/13        2.5E-4     
   0.14... (33/229)   |      16/111       2.7E-4     
   0.05... (33/683)   |      10/207      -1.5E-4     
   0.18... (100/541)  |      17/92       -3.3E-4     
   0.06... (33/541)   |       5/82       -3.7E-4     
   0.1                |       1/10         0         
   0.2                |       1/5          0         
   0.3                |       3/10         0         
   0.4                |       2/5          0         
   0.5                |       1/2          0         
   0.6                |       3/5          0         
   0.7                |       7/10         0         
   0.8                |       4/5          0         
   0.9                |       9/10         0         
   0.01               |       1/100        0         
   0.001              |       1/1000       0         
   0.0001             |       1/10000      0         
   0.33333333333      |       1/3         1.0E-11    
   0.333              |     333/1000       0         
   0.7777             |       7/9         1.0E-4     
   0.11               |      10/91       -1.0E-3     
   0.1111             |       1/9         1.0E-4     
   3.14               |      22/7         9.1E-4     
   3.14... (pi)       |      22/7         4.0E-4     
   2.72... (e)        |      87/32        1.7E-4     
   0.7454545454545    |      38/51       -4.8E-4     
   0.01024801004      |       2/195       8.2E-4     
   0.99011            |     100/101      -1.1E-5     
   0.26... (5/19)     |       5/19         0         
   0.61... (37/61)    |      17/28        9.7E-4     
                      | 
Accuracy: 1.0E-4      | Richards                     
Input                 | Result           Error       
======================| =============================
   0.62... (307/499)  |     299/486      -6.7E-6     
   0.05... (33/683)   |      23/476       6.4E-5     
   0.06... (33/541)   |      33/541        0         
   1E-05              |       1/99999     1.0E-5     
   0.7777             |    1109/1426     -1.8E-7     
   3.14... (pi)       |     333/106      -2.6E-5     
   2.72... (e)        |     193/71        1.0E-5     
   0.61... (37/61)    |      37/61         0         

你将遇到两个基本问题,这会让这件事变得困难:

1) 浮点不是精确的表示,这意味着如果“x/y”的分数导致值“z”,则分数算法可能会返回“x/y”以外的结果。

2)无理数比有理数多无穷多。有理数是可以表示为分数的数。非理性是那些做不到的人。

然而,以一种廉价的方式,由于浮点的精度有限,因此您始终可以将其表示为某种形式的派别。(我认为...)

完成上述代码并将其转换为as3

public static function toFrac(f:Number) : String
    {
        if (f>1)
        {
            var parte1:int;
            var parte2:Number;
            var resultado:String;
            var loc:int = String(f).indexOf(".");
            parte2 = Number(String(f).slice(loc, String(f).length));
            parte1 = int(String(f).slice(0,loc));
            resultado = toFrac(parte2);
            parte1 *= int(resultado.slice(resultado.indexOf("/") + 1, resultado.length)) + int(resultado.slice(0, resultado.indexOf("/")));
            resultado = String(parte1) +  resultado.slice(resultado.indexOf("/"), resultado.length)
            return resultado;
        }
        if( f < 0.47 )
            if( f < 0.25 )
                if( f < 0.16 )
                    if( f < 0.13 )
                        if( f < 0.11 )
                            return "1/10";
                        else
                            return "1/9";
                    else
                        if( f < 0.14 )
                            return "1/8";
                        else
                            return "1/7";
                else
                    if( f < 0.19 )
                        return "1/6";
                    else
                        if( f < 0.22 )
                            return "1/5";
                        else
                            return "2/9";
            else
                if( f < 0.38 )
                    if( f < 0.29 )
                        return "1/4";
                    else
                        if( f < 0.31 )
                            return "2/7";
                        else
                            return "1/3";
                else
                    if( f < 0.43 )
                        if( f < 0.40 )
                            return "3/8";
                        else
                            return "2/5";
                    else
                        if( f < 0.44 )
                            return "3/7";
                        else
                            return "4/9";
        else
            if( f < 0.71 )
                if( f < 0.60 )
                    if( f < 0.56 )
                        return "1/2";
                    else
                        if( f < 0.57 )
                            return "5/9";
                        else
                            return "4/7";
                else
                    if( f < 0.63 )
                        return "3/5";
                    else
                        if( f < 0.66 )
                            return "5/8";
                        else
                            return "2/3";
            else
                if( f < 0.80 )
                    if( f < 0.74 )
                        return "5/7";
                    else
                        if(f < 0.78 )
                            return "3/4";
                        else
                            return "7/9";
                else
                    if( f < 0.86 )
                        if( f < 0.83 )
                            return "4/5";
                        else
                            return "5/6";
                    else
                        if( f < 0.88 )
                            return "6/7";
                        else
                            if( f < 0.89 )
                                return "7/8";
                            else
                                if( f < 0.90 )
                                    return "8/9";
                                else
                                    return "9/10";
    }

假设我们有 0.33,我们需要输出“1/3”。如果我们有“ 0.4”,则需要输出“ 2/5”。

通常情况下,这是错误的,因为1/3 = 0.3333333 = 0。(3)此外,从上面建议的解决方案中找出十进制是用定义的精度转换为分数的,因为输出始终是分数。

但是,我建议我的综合功能有很多基于以下想法的选项 无限几何级数, ,特别是公式:

enter image description here

首先,该函数尝试查找字符串表示形式中的分数周期。之后应用上述公式。

有理数代码借自 斯蒂芬·M。麦卡米 C# 中的有理数实现。我希望将我的代码移植到其他语言上并不困难。

/// <summary>
/// Convert decimal to fraction
/// </summary>
/// <param name="value">decimal value to convert</param>
/// <param name="result">result fraction if conversation is succsess</param>
/// <param name="decimalPlaces">precision of considereation frac part of value</param>
/// <param name="trimZeroes">trim zeroes on the right part of the value or not</param>
/// <param name="minPeriodRepeat">minimum period repeating</param>
/// <param name="digitsForReal">precision for determination value to real if period has not been founded</param>
/// <returns></returns>
public static bool FromDecimal(decimal value, out Rational<T> result, 
    int decimalPlaces = 28, bool trimZeroes = false, decimal minPeriodRepeat = 2, int digitsForReal = 9)
{
    var valueStr = value.ToString("0.0000000000000000000000000000", CultureInfo.InvariantCulture);
    var strs = valueStr.Split('.');

    long intPart = long.Parse(strs[0]);
    string fracPartTrimEnd = strs[1].TrimEnd(new char[] { '0' });
    string fracPart;

    if (trimZeroes)
    {
        fracPart = fracPartTrimEnd;
        decimalPlaces = Math.Min(decimalPlaces, fracPart.Length);
    }
    else
        fracPart = strs[1];

    result = new Rational<T>();
    try
    {
        string periodPart;
        bool periodFound = false;

        int i;
        for (i = 0; i < fracPart.Length; i++)
        {
            if (fracPart[i] == '0' && i != 0)
                continue;

            for (int j = i + 1; j < fracPart.Length; j++)
            {
                periodPart = fracPart.Substring(i, j - i);
                periodFound = true;
                decimal periodRepeat = 1;
                decimal periodStep = 1.0m / periodPart.Length;
                var upperBound = Math.Min(fracPart.Length, decimalPlaces);
                int k;
                for (k = i + periodPart.Length; k < upperBound; k += 1)
                {
                    if (periodPart[(k - i) % periodPart.Length] != fracPart[k])
                    {
                        periodFound = false;
                        break;
                    }
                    periodRepeat += periodStep;
                }

                if (!periodFound && upperBound - k <= periodPart.Length && periodPart[(upperBound - i) % periodPart.Length] > '5')
                {
                    var ind = (k - i) % periodPart.Length;
                    var regroupedPeriod = (periodPart.Substring(ind) + periodPart.Remove(ind)).Substring(0, upperBound - k);
                    ulong periodTailPlusOne = ulong.Parse(regroupedPeriod) + 1;
                    ulong fracTail = ulong.Parse(fracPart.Substring(k, regroupedPeriod.Length));
                    if (periodTailPlusOne == fracTail)
                        periodFound = true;
                }

                if (periodFound && periodRepeat >= minPeriodRepeat)
                {
                    result = FromDecimal(strs[0], fracPart.Substring(0, i), periodPart);
                    break;
                }
                else
                    periodFound = false;
            }

            if (periodFound)
                break;
        }

        if (!periodFound)
        {
            if (fracPartTrimEnd.Length >= digitsForReal)
                return false;
            else
            {
                result = new Rational<T>(long.Parse(strs[0]), 1, false);
                if (fracPartTrimEnd.Length != 0)
                    result = new Rational<T>(ulong.Parse(fracPartTrimEnd), TenInPower(fracPartTrimEnd.Length));
                return true;
            }
        }

        return true;
    }
    catch
    {
        return false;
    }
}

public static Rational<T> FromDecimal(string intPart, string fracPart, string periodPart)
{
    Rational<T> firstFracPart;
    if (fracPart != null && fracPart.Length != 0)
    {
        ulong denominator = TenInPower(fracPart.Length);
        firstFracPart = new Rational<T>(ulong.Parse(fracPart), denominator);
    }
    else
        firstFracPart = new Rational<T>(0, 1, false);

    Rational<T> secondFracPart;
    if (periodPart != null && periodPart.Length != 0)
        secondFracPart =
            new Rational<T>(ulong.Parse(periodPart), TenInPower(fracPart.Length)) *
            new Rational<T>(1, Nines((ulong)periodPart.Length), false);
    else
        secondFracPart = new Rational<T>(0, 1, false);

    var result = firstFracPart + secondFracPart;
    if (intPart != null && intPart.Length != 0)
    {
        long intPartLong = long.Parse(intPart);
        result = new Rational<T>(intPartLong, 1, false) + (intPartLong == 0 ? 1 : Math.Sign(intPartLong)) * result;
    }

    return result;
}

private static ulong TenInPower(int power)
{
    ulong result = 1;
    for (int l = 0; l < power; l++)
        result *= 10;
    return result;
}

private static decimal TenInNegPower(int power)
{
    decimal result = 1;
    for (int l = 0; l > power; l--)
        result /= 10.0m;
    return result;
}

private static ulong Nines(ulong power)
{
    ulong result = 9;
    if (power >= 0)
        for (ulong l = 0; l < power - 1; l++)
            result = result * 10 + 9;
    return result;
}

有一些使用示例:

Rational<long>.FromDecimal(0.33333333m, out r, 8, false);
// then r == 1 / 3;

Rational<long>.FromDecimal(0.33333333m, out r, 9, false);
// then r == 33333333 / 100000000;

您的箱子带有右零部分修剪:

Rational<long>.FromDecimal(0.33m, out r, 28, true);
// then r == 1 / 3;

Rational<long>.FromDecimal(0.33m, out r, 28, true);
// then r == 33 / 100;

最短周期演示:

Rational<long>.FromDecimal(0.123412m, out r, 28, true, 1.5m));
// then r == 1234 / 9999;
Rational<long>.FromDecimal(0.123412m, out r, 28, true, 1.6m));
// then r == 123412 / 1000000; because of minimu repeating of period is 0.1234123 in this case.

最后四舍五入:

Rational<long>.FromDecimal(0.8888888888888888888888888889m, out r));
// then r == 8 == 9;

最有趣的案例:

Rational<long>.FromDecimal(0.12345678m, out r, 28, true, 2, 9);
// then r == 12345678 / 100000000;

Rational<long>.FromDecimal(0.12345678m, out r, 28, true, 2, 8);
// Conversation failed, because of period has not been founded and there are too many digits in fraction part of input value.

Rational<long>.FromDecimal(0.12121212121212121m, out r, 28, true, 2, 9));
// then r == 4 / 33; Despite of too many digits in input value, period has been founded. Thus it's possible to convert value to fraction.

每个人都可以找到其他测试和代码 我在 github 上的 MathFunctions 库.

这是一个快速而肮脏的 JavaScript 实现,它使用了暴力方法。根本没有优化,它在预定义的分数范围内工作: http://jsfiddle.net/PdL23/1/

/* This should convert any decimals to a simplified fraction within the range specified by the two for loops. Haven't done any thorough testing, but it seems to work fine.

I have set the bounds for numerator and denominator to 20, 20... but you can increase this if you want in the two for loops.

Disclaimer: Its not at all optimized. (Feel free to create an improved version.)
*/

decimalToSimplifiedFraction = function(n) {

    for(num = 1; num < 20; num++) {  // "num" is the potential numerator
        for(den = 1; den < 20; den++) {  // "den" is the potential denominator
            var multiplyByInverse = (n * den ) / num;

            var roundingError = Math.round(multiplyByInverse) - multiplyByInverse;

            // Checking if we have found the inverse of the number, 
            if((Math.round(multiplyByInverse) == 1) && (Math.abs(roundingError) < 0.01)) {
                return num + "/" + den;
            }
        }
    }
};

//Put in your test number here.
var floatNumber = 2.56;

alert(floatNumber + " = " + decimalToSimplifiedFraction(floatNumber));

这是受到 JPS 使用的方法的启发。

正如许多人所说,您确实无法将浮点数转换回分数(除非它非常精确,例如 0.25)。当然,您可以为大量分数创建某种类型的查找,并使用某种模糊逻辑来生成您正在寻找的结果。同样,这并不准确,您需要定义您希望分母的大小的下限。

.32 < x < .34 = 1/3 或类似的值。

这是 ruby​​ 的实现 http://github.com/valodzka/frac

Math.frac(0.2, 100)  # => (1/5)
Math.frac(0.33, 10)  # => (1/3)
Math.frac(0.33, 100) # => (33/100)

我遇到了一个特别优雅的 Haskell 解决方案,它利用了变形。这取决于 递归方案 包裹。

{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE FlexibleContexts    #-}

import           Control.Applicative   (liftA2)
import           Control.Monad         (ap)
import           Data.Functor.Foldable
import           Data.Ratio            (Ratio, (%))

isInteger :: (RealFrac a) => a -> Bool
isInteger = ((==) <*>) (realToFrac . floor)

continuedFraction :: (RealFrac a) => a -> [Int]
continuedFraction = liftA2 (:) floor (ana coalgebra)
    where coalgebra x
              | isInteger x = Nil
              | otherwise = Cons (floor alpha) alpha
                  where alpha = 1 / (x - realToFrac (floor x))

collapseFraction :: (Integral a) => [Int] -> Ratio a
collapseFraction [x]    = fromIntegral x % 1
collapseFraction (x:xs) = (fromIntegral x % 1) + 1 / collapseFraction xs

-- | Use the nth convergent to approximate x
approximate :: (RealFrac a, Integral b) => a -> Int -> Ratio b
approximate x n = collapseFraction $ take n (continuedFraction x)

如果你在 ghci 中尝试一下,它确实有效!

λ:> approximate pi 2
22 % 7
许可以下: CC-BY-SA归因
不隶属于 StackOverflow
scroll top