Pergunta

Vamos dizer que temos 0,33, precisamos de saída "1/3".
Se tivermos "0,4", precisamos de saída "2/5".

A idéia é torná-lo legível para tornar o usuário a entender "x peças fora de y", como a melhor maneira de dados compreensão.

Eu sei que percentagens é um bom substituto, mas eu queria saber se havia uma maneira simples de fazer isso?

Foi útil?

Solução

Eu encontrei David Eppstein encontrar aproximação racional dado número real código C para ser exatamente o que você está pedindo. Sua baseada na teoria de frações contínuas e muito rápido e bastante compactas.

Eu versões deste personalizado para limites numerador e do denominador específicos utilizados.

/*
** find rational approximation to given real number
** David Eppstein / UC Irvine / 8 Aug 1993
**
** With corrections from Arno Formella, May 2008
**
** usage: a.out r d
**   r is real number to approx
**   d is the maximum denominator allowed
**
** based on the theory of continued fractions
** if x = a1 + 1/(a2 + 1/(a3 + 1/(a4 + ...)))
** then best approximation is found by truncating this series
** (with some adjustments in the last term).
**
** Note the fraction can be recovered as the first column of the matrix
**  ( a1 1 ) ( a2 1 ) ( a3 1 ) ...
**  ( 1  0 ) ( 1  0 ) ( 1  0 )
** Instead of keeping the sequence of continued fraction terms,
** we just keep the last partial product of these matrices.
*/

#include <stdio.h>

main(ac, av)
int ac;
char ** av;
{
    double atof();
    int atoi();
    void exit();

    long m[2][2];
    double x, startx;
    long maxden;
    long ai;

    /* read command line arguments */
    if (ac != 3) {
        fprintf(stderr, "usage: %s r d\n",av[0]);  // AF: argument missing
        exit(1);
    }
    startx = x = atof(av[1]);
    maxden = atoi(av[2]);

    /* initialize matrix */
    m[0][0] = m[1][1] = 1;
    m[0][1] = m[1][0] = 0;

    /* loop finding terms until denom gets too big */
    while (m[1][0] *  ( ai = (long)x ) + m[1][1] <= maxden) {
        long t;
        t = m[0][0] * ai + m[0][1];
        m[0][1] = m[0][0];
        m[0][0] = t;
        t = m[1][0] * ai + m[1][1];
        m[1][1] = m[1][0];
        m[1][0] = t;
        if(x==(double)ai) break;     // AF: division by zero
        x = 1/(x - (double) ai);
        if(x>(double)0x7FFFFFFF) break;  // AF: representation failure
    } 

    /* now remaining x is between 0 and 1/ai */
    /* approx as either 0 or 1/m where m is max that will fit in maxden */
    /* first try zero */
    printf("%ld/%ld, error = %e\n", m[0][0], m[1][0],
           startx - ((double) m[0][0] / (double) m[1][0]));

    /* now try other possibility */
    ai = (maxden - m[1][1]) / m[1][0];
    m[0][0] = m[0][0] * ai + m[0][1];
    m[1][0] = m[1][0] * ai + m[1][1];
    printf("%ld/%ld, error = %e\n", m[0][0], m[1][0],
           startx - ((double) m[0][0] / (double) m[1][0]));
}

Outras dicas

A partir do Python 2.6 em há a fractions módulo.

(Citando os docs.)

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)

>>> from math import pi, cos
>>> Fraction.from_float(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction.from_float(cos(pi/3)).limit_denominator()
Fraction(1, 2)

Se a saída é dar um leitor humano uma impressão rápida do fim do resultado, não faz sentido retorno algo como "113/211", de modo que a saída deve limitar-se a usar números de um dígito (e talvez 1/10 e 9/10). Se assim for, você pode observar que há apenas 27 diferente frações.

Uma vez que a matemática subjacente para gerar a saída nunca vai mudar, uma solução poderia ser a de simplesmente codificar uma árvore de busca binária, de modo que a função iria realizar no máximo log (27) ~ = 4 3/4 comparações. Aqui está uma versão testada C do código

char *userTextForDouble(double d, char *rval)
{
    if (d == 0.0)
        return "0";

    // TODO: negative numbers:if (d < 0.0)...
    if (d >= 1.0)
        sprintf(rval, "%.0f ", floor(d));
    d = d-floor(d); // now only the fractional part is left

    if (d == 0.0)
        return rval;

    if( d < 0.47 )
    {
        if( d < 0.25 )
        {
            if( d < 0.16 )
            {
                if( d < 0.12 ) // Note: fixed from .13
                {
                    if( d < 0.11 )
                        strcat(rval, "1/10"); // .1
                    else
                        strcat(rval, "1/9"); // .1111....
                }
                else // d >= .12
                {
                    if( d < 0.14 )
                        strcat(rval, "1/8"); // .125
                    else
                        strcat(rval, "1/7"); // .1428...
                }
            }
            else // d >= .16
            {
                if( d < 0.19 )
                {
                    strcat(rval, "1/6"); // .1666...
                }
                else // d > .19
                {
                    if( d < 0.22 )
                        strcat(rval, "1/5"); // .2
                    else
                        strcat(rval, "2/9"); // .2222...
                }
            }
        }
        else // d >= .25
        {
            if( d < 0.37 ) // Note: fixed from .38
            {
                if( d < 0.28 ) // Note: fixed from .29
                {
                    strcat(rval, "1/4"); // .25
                }
                else // d >=.28
                {
                    if( d < 0.31 )
                        strcat(rval, "2/7"); // .2857...
                    else
                        strcat(rval, "1/3"); // .3333...
                }
            }
            else // d >= .37
            {
                if( d < 0.42 ) // Note: fixed from .43
                {
                    if( d < 0.40 )
                        strcat(rval, "3/8"); // .375
                    else
                        strcat(rval, "2/5"); // .4
                }
                else // d >= .42
                {
                    if( d < 0.44 )
                        strcat(rval, "3/7"); // .4285...
                    else
                        strcat(rval, "4/9"); // .4444...
                }
            }
        }
    }
    else
    {
        if( d < 0.71 )
        {
            if( d < 0.60 )
            {
                if( d < 0.55 ) // Note: fixed from .56
                {
                    strcat(rval, "1/2"); // .5
                }
                else // d >= .55
                {
                    if( d < 0.57 )
                        strcat(rval, "5/9"); // .5555...
                    else
                        strcat(rval, "4/7"); // .5714
                }
            }
            else // d >= .6
            {
                if( d < 0.62 ) // Note: Fixed from .63
                {
                    strcat(rval, "3/5"); // .6
                }
                else // d >= .62
                {
                    if( d < 0.66 )
                        strcat(rval, "5/8"); // .625
                    else
                        strcat(rval, "2/3"); // .6666...
                }
            }
        }
        else
        {
            if( d < 0.80 )
            {
                if( d < 0.74 )
                {
                    strcat(rval, "5/7"); // .7142...
                }
                else // d >= .74
                {
                    if(d < 0.77 ) // Note: fixed from .78
                        strcat(rval, "3/4"); // .75
                    else
                        strcat(rval, "7/9"); // .7777...
                }
            }
            else // d >= .8
            {
                if( d < 0.85 ) // Note: fixed from .86
                {
                    if( d < 0.83 )
                        strcat(rval, "4/5"); // .8
                    else
                        strcat(rval, "5/6"); // .8333...
                }
                else // d >= .85
                {
                    if( d < 0.87 ) // Note: fixed from .88
                    {
                        strcat(rval, "6/7"); // .8571
                    }
                    else // d >= .87
                    {
                        if( d < 0.88 ) // Note: fixed from .89
                        {
                            strcat(rval, "7/8"); // .875
                        }
                        else // d >= .88
                        {
                            if( d < 0.90 )
                                strcat(rval, "8/9"); // .8888...
                            else
                                strcat(rval, "9/10"); // .9
                        }
                    }
                }
            }
        }
    }

    return rval;
}

Aqui está um link explicando a matemática por trás converter um decimal em uma fração:

http://www.webmath.com/dec2fract.html

E aqui está uma função de exemplo para saber como realmente fazê-lo usando VB (de www.freevbcode.com/ShowCode.asp?ID=582):

Public Function Dec2Frac(ByVal f As Double) As String

   Dim df As Double
   Dim lUpperPart As Long
   Dim lLowerPart As Long

   lUpperPart = 1
   lLowerPart = 1

   df = lUpperPart / lLowerPart
   While (df <> f)
      If (df < f) Then
         lUpperPart = lUpperPart + 1
      Else
         lLowerPart = lLowerPart + 1
         lUpperPart = f * lLowerPart
      End If
      df = lUpperPart / lLowerPart
   Wend
Dec2Frac = CStr(lUpperPart) & "/" & CStr(lLowerPart)
End Function

(De pesquisas do Google: converter decimal para fração, convertido decimal para o código fração)

Você pode querer ler O que cada cientista computador deve saber sobre ponto flutuante aritmético .

Você terá que especificar alguma precisão multiplicando por um grande número:

3.141592 * 1000000 = 3141592

então você pode fazer uma fração:

3 + (141592 / 1000000)

e reduzir via GCD ...

3 + (17699 / 125000)

mas não há nenhuma maneira de obter o destinado a fração. Você pode querer sempre usar frações em todo o seu código em vez --apenas lembre-se de reduzir frações quando você puder para evitar estouro!

Aqui estão as versões Perl e JavaScript do código VB sugerido por devinmoore:

Perl:

sub dec2frac {
    my $d = shift;

    my $df  = 1;
    my $top = 1;
    my $bot = 1;

    while ($df != $d) {
      if ($df < $d) {
        $top += 1;
      }
      else {
         $bot += 1;
         $top = int($d * $bot);
      }
      $df = $top / $bot;
   }
   return "$top/$bot";
}

E o javascript quase idênticos:

function dec2frac(d) {

    var df = 1;
    var top = 1;
    var bot = 1;

    while (df != d) {
        if (df < d) {
            top += 1;
        }
        else {
            bot += 1;
            top = parseInt(d * bot);
        }
        df = top / bot;
    }
    return top + '/' + bot;
}

A C # implementação

/// <summary>
/// Represents a rational number
/// </summary>
public struct Fraction
{
    public int Numerator;
    public int Denominator;

    /// <summary>
    /// Constructor
    /// </summary>
    public Fraction(int numerator, int denominator)
    {
        this.Numerator = numerator;
        this.Denominator = denominator;
    }

    /// <summary>
    /// Approximates a fraction from the provided double
    /// </summary>
    public static Fraction Parse(double d)
    {
        return ApproximateFraction(d);
    }

    /// <summary>
    /// Returns this fraction expressed as a double, rounded to the specified number of decimal places.
    /// Returns double.NaN if denominator is zero
    /// </summary>
    public double ToDouble(int decimalPlaces)
    {
        if (this.Denominator == 0)
            return double.NaN;

        return System.Math.Round(
            Numerator / (double)Denominator,
            decimalPlaces
        );
    }


    /// <summary>
    /// Approximates the provided value to a fraction.
    /// http://stackoverflow.com/questions/95727/how-to-convert-floats-to-human-readable-fractions
    /// </summary>
    private static Fraction ApproximateFraction(double value)
    {
        const double EPSILON = .000001d;

        int n = 1;  // numerator
        int d = 1;  // denominator
        double fraction = n / d;

        while (System.Math.Abs(fraction - value) > EPSILON)
        {
            if (fraction < value)
            {
                n++;
            }
            else
            {
                d++;
                n = (int)System.Math.Round(value * d);
            }

            fraction = n / (double)d;
        }

        return new Fraction(n, d);
    }
}

O Stern-Brocot Árvore induz uma maneira bastante natural para números reais aproximados por frações com denominadores simples.

Parte do problema é que muitas frações não são realmente facilmente interpretado como frações. Por exemplo. 0,33 não é 1/3, é 33/100. Mas se você se lembrar da sua formação escola primária, então há um processo de conversão de valores decimais em frações, no entanto, é improvável que dar-lhe o que quiser desde que a maioria das vezes números decimais não são armazenados em 0,33, mas ,329999999999998 ou algo assim.

Faça um favor e não se preocupam com isso, mas se você precisa, então você pode fazer o seguinte:

Multiplicar o valor original de 10 até remover a parte fracionária. Mantenha esse número, e usá-lo como o divisor. Em seguida, fazer uma série de simplificações, procurando por denominadores comuns.

Assim 0,4 seria 4/10. Você, então, procurar divisores comuns que começam com valores baixos, provavelmente números primos. Começando com 2, você veria se 2 divide tanto o numerador eo denominador de maneira uniforme, verificando se o chão da divisão é o mesmo que a própria divisão.

floor(5/2) = 2
5/2 = 2.5

Assim 5 não divide 2 uniformemente. Então você verificar o número seguinte, dizer 3. Você pode fazer isso até que você bata igual ou superior a raiz quadrada do número menor.

Depois de fazer isso, então você precisa

Este não é um "algoritmo", apenas uma solução de Python: http://docs.python.org/library/fractions.html

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)

"Vamos dizer que nós temos 0,33, precisamos de saída '1/3'."

O que a precisão que você espera a "solução" de ter? 0.33 não é igual a 1/3. Como você reconhece um "bom" (fácil de ler) resposta?

Não importa o que, um possível algoritmo poderia ser:

Se você espera encontrar uma fração mais próxima de uma forma X / Y onde Y é inferior a 10, então você pode fazer um loop embora todos os 9 possíveis Ys, para cada Y computação X e, em seguida, selecionar o mais preciso.

Um embutido solução em R:

library(MASS)
fractions(0.666666666)
## [1] 2/3

Este utiliza um método de fração contínua e tem cycles e max.denominator argumentos opcionais para ajustar a precisão.

Você vai ter que descobrir qual o nível de erro que você está disposto a aceitar. Nem todas as frações decimais reduzirá a uma fração simples. Eu provavelmente escolher um número facilmente divisível, como 60, e descobrir quantos 60ths é mais próximo do valor, em seguida, simplificar a fração.

Você pode fazer isso em qualquer linguagem de programação utilizando os seguintes passos:

  1. multiplicar e dividir por 10 ^ x, onde x é o poder de 10 necessário para se certificar de que o número não tem casas decimais restantes. Exemplo: Multiplicar 0,33 por 10 ^ 2 = 100 para torná-lo 33 e dividi-lo pelo mesmo para obter 33/100
  2. Reduzir o numerador eo denominador da fração resultante por fatoração, até que você não pode obter números inteiros a partir do resultado.
  3. A fração reduzida resultante deve ser a sua resposta.

Exemplo: 0,2 = 0,2 x 10 ^ 1/10 ^ 1 = 10/02 = 1/5

Assim, que pode ser lido como 'uma parte de 5'

Uma solução é apenas armazenar todos os números como números racionais em primeiro lugar. Existem bibliotecas para número racional aritmética (por exemplo GMP ). Se estiver usando uma linguagem OO você pode ser capaz de usar apenas uma biblioteca racional classe número para substituir sua classe número.

programas de financiamento, entre outros, usaria essa solução a ser capaz de fazer cálculos exatos e preservar a precisão que pode ser perdida usando uma bóia simples.

Claro que vai ser muito mais lento por isso não pode ser prático para você. Depende da quantidade de cálculos que você precisa fazer, e como é importante a precisão é para você.

a = rational(1);
b = rational(3);
c = a / b;

print (c.asFraction)  --->  "1/3"
print (c.asFloat) ----> "0.333333"

Eu acho que a melhor maneira de fazer isso é primeiro converter o seu valor float para uma representação ASCII. Em C ++ você poderia usar ostringstream ou C, você poderia usar sprintf. Aqui está como ele ficaria em C ++:

ostringstream oss;
float num;
cin >> num;
oss << num;
string numStr = oss.str();
int i = numStr.length(), pow_ten = 0;
while (i > 0) {
    if (numStr[i] == '.')
        break;
    pow_ten++;
    i--;
}
for (int j = 1; j < pow_ten; j++) {
    num *= 10.0;
}
cout << static_cast<int>(num) << "/" << pow(10, pow_ten - 1) << endl;

Uma abordagem semelhante pode ser tomada em linha reta C.

Depois que você precisa verificar se a fração for menor em termos. Este algoritmo irá dar uma resposta precisa, ou seja, 0,33 saída seria "33/100", não "1/3". No entanto, 0,4 daria "10/04", o qual, quando reduzida a termos mais baixo seria "2/5". Isto pode não ser tão poderoso como solução de Eppstein, mas acredito que esta é mais simples.

Rubi já tem um construído em solução:

0.33.rationalize.to_s # => "33/100"
0.4.rationalize.to_s # => "2/5"

Em Rails, atributos numéricos ActiveRecord pode ser convertido demasiado:

product.size = 0.33
product.size.to_r.to_s # => "33/100"

Resposta em C ++, supondo que você tem classe um 'BigInt', que pode armazenar números inteiros de tamanho ilimitado.

Você pode usar 'unsigned long long' em vez, mas só irá funcionar para certos valores.

void GetRational(double val)
{
    if (val == val+1) // Inf
        throw "Infinite Value";
    if (val != val) // NaN
        throw "Undefined Value";

    bool sign = false;
    BigInt enumerator = 0;
    BigInt denominator = 1;

    if (val < 0)
    {
        val = -val;
        sign = true;
    }

    while (val > 0)
    {
        unsigned int intVal = (unsigned int)val;
        val -= intVal;
        enumerator += intVal;
        val *= 2;
        enumerator *= 2;
        denominator *= 2;
    }

    BigInt gcd = GCD(enumerator,denominator);
    enumerator /= gcd;
    denominator /= gcd;

    Print(sign? "-":"+");
    Print(enumerator);
    Print("/");
    Print(denominator);

    // Or simply return {sign,enumerator,denominator} as you wish
}

BTW, GetRational (0.0) irá retornar "+0/1", então você pode querer lidar com este caso separadamente.

P.S .: Eu tenho usado este código em minha própria classe 'RationalNum' por vários anos, e tem sido testado exaustivamente.

Este algoritmo por Ian Richards / John Kennedy não só retorna frações agradáveis, ele também executa muito bem em termos de velocidade. Este é código C # como tomada do esta resposta por mim.

Ele pode lidar com todos os valores double exceto valores especiais como NaN e +/- infinito, que você terá que adicionar, se necessário.

Ele retorna um new Fraction(numerator, denominator). Substitua pelo seu próprio tipo.

Para mais exemplos de valores e uma comparação com outros algoritmos, aqui

public Fraction RealToFraction(double value, double accuracy)
{
    if (accuracy <= 0.0 || accuracy >= 1.0)
    {
        throw new ArgumentOutOfRangeException("accuracy", "Must be > 0 and < 1.");
    }

    int sign = Math.Sign(value);

    if (sign == -1)
    {
        value = Math.Abs(value);
    }

    // Accuracy is the maximum relative error; convert to absolute maxError
    double maxError = sign == 0 ? accuracy : value * accuracy;

    int n = (int) Math.Floor(value);
    value -= n;

    if (value < maxError)
    {
        return new Fraction(sign * n, 1);
    }

    if (1 - maxError < value)
    {
        return new Fraction(sign * (n + 1), 1);
    }

    double z = value;
    int previousDenominator = 0;
    int denominator = 1;
    int numerator;

    do
    {
        z = 1.0 / (z - (int) z);
        int temp = denominator;
        denominator = denominator * (int) z + previousDenominator;
        previousDenominator = temp;
        numerator = Convert.ToInt32(value * denominator);
    }
    while (Math.Abs(value - (double) numerator / denominator) > maxError && z != (int) z);

    return new Fraction((n * denominator + numerator) * sign, denominator);
}

Exemplo valores devolvidos por este algoritmo:

Accuracy: 1.0E-3      | Richards                     
Input                 | Result           Error       
======================| =============================
   3                  |       3/1          0         
   0.999999           |       1/1         1.0E-6     
   1.000001           |       1/1        -1.0E-6     
   0.50 (1/2)         |       1/2          0         
   0.33... (1/3)      |       1/3          0         
   0.67... (2/3)      |       2/3          0         
   0.25 (1/4)         |       1/4          0         
   0.11... (1/9)      |       1/9          0         
   0.09... (1/11)     |       1/11         0         
   0.62... (307/499)  |       8/13        2.5E-4     
   0.14... (33/229)   |      16/111       2.7E-4     
   0.05... (33/683)   |      10/207      -1.5E-4     
   0.18... (100/541)  |      17/92       -3.3E-4     
   0.06... (33/541)   |       5/82       -3.7E-4     
   0.1                |       1/10         0         
   0.2                |       1/5          0         
   0.3                |       3/10         0         
   0.4                |       2/5          0         
   0.5                |       1/2          0         
   0.6                |       3/5          0         
   0.7                |       7/10         0         
   0.8                |       4/5          0         
   0.9                |       9/10         0         
   0.01               |       1/100        0         
   0.001              |       1/1000       0         
   0.0001             |       1/10000      0         
   0.33333333333      |       1/3         1.0E-11    
   0.333              |     333/1000       0         
   0.7777             |       7/9         1.0E-4     
   0.11               |      10/91       -1.0E-3     
   0.1111             |       1/9         1.0E-4     
   3.14               |      22/7         9.1E-4     
   3.14... (pi)       |      22/7         4.0E-4     
   2.72... (e)        |      87/32        1.7E-4     
   0.7454545454545    |      38/51       -4.8E-4     
   0.01024801004      |       2/195       8.2E-4     
   0.99011            |     100/101      -1.1E-5     
   0.26... (5/19)     |       5/19         0         
   0.61... (37/61)    |      17/28        9.7E-4     
                      | 
Accuracy: 1.0E-4      | Richards                     
Input                 | Result           Error       
======================| =============================
   0.62... (307/499)  |     299/486      -6.7E-6     
   0.05... (33/683)   |      23/476       6.4E-5     
   0.06... (33/541)   |      33/541        0         
   1E-05              |       1/99999     1.0E-5     
   0.7777             |    1109/1426     -1.8E-7     
   3.14... (pi)       |     333/106      -2.6E-5     
   2.72... (e)        |     193/71        1.0E-5     
   0.61... (37/61)    |      37/61         0         

Você vai ter dois problemas básicos que vão fazer este disco:

1) ponto flutuante não é uma representação exata que significa que se você tem uma fração do "X / Y", que resulta em um valor de "z", seu algoritmo de fração pode retornar um resultado diferente de "X / Y ".

2) Existem infinitas muitos números mais irracionais do que racional. Um número racional é um que pode ser representado como uma fracção. Ser mais irracionais que não pode.

No entanto, em uma espécie barata de forma, uma vez ponto flutuante tem uma precisão limite, então você sempre pode representá-lo como alguma forma de facção. (Eu acho ...)

Concluído o código acima e converteu-o para AS3

public static function toFrac(f:Number) : String
    {
        if (f>1)
        {
            var parte1:int;
            var parte2:Number;
            var resultado:String;
            var loc:int = String(f).indexOf(".");
            parte2 = Number(String(f).slice(loc, String(f).length));
            parte1 = int(String(f).slice(0,loc));
            resultado = toFrac(parte2);
            parte1 *= int(resultado.slice(resultado.indexOf("/") + 1, resultado.length)) + int(resultado.slice(0, resultado.indexOf("/")));
            resultado = String(parte1) +  resultado.slice(resultado.indexOf("/"), resultado.length)
            return resultado;
        }
        if( f < 0.47 )
            if( f < 0.25 )
                if( f < 0.16 )
                    if( f < 0.13 )
                        if( f < 0.11 )
                            return "1/10";
                        else
                            return "1/9";
                    else
                        if( f < 0.14 )
                            return "1/8";
                        else
                            return "1/7";
                else
                    if( f < 0.19 )
                        return "1/6";
                    else
                        if( f < 0.22 )
                            return "1/5";
                        else
                            return "2/9";
            else
                if( f < 0.38 )
                    if( f < 0.29 )
                        return "1/4";
                    else
                        if( f < 0.31 )
                            return "2/7";
                        else
                            return "1/3";
                else
                    if( f < 0.43 )
                        if( f < 0.40 )
                            return "3/8";
                        else
                            return "2/5";
                    else
                        if( f < 0.44 )
                            return "3/7";
                        else
                            return "4/9";
        else
            if( f < 0.71 )
                if( f < 0.60 )
                    if( f < 0.56 )
                        return "1/2";
                    else
                        if( f < 0.57 )
                            return "5/9";
                        else
                            return "4/7";
                else
                    if( f < 0.63 )
                        return "3/5";
                    else
                        if( f < 0.66 )
                            return "5/8";
                        else
                            return "2/3";
            else
                if( f < 0.80 )
                    if( f < 0.74 )
                        return "5/7";
                    else
                        if(f < 0.78 )
                            return "3/4";
                        else
                            return "7/9";
                else
                    if( f < 0.86 )
                        if( f < 0.83 )
                            return "4/5";
                        else
                            return "5/6";
                    else
                        if( f < 0.88 )
                            return "6/7";
                        else
                            if( f < 0.89 )
                                return "7/8";
                            else
                                if( f < 0.90 )
                                    return "8/9";
                                else
                                    return "9/10";
    }

Vamos dizer que temos 0,33, precisamos de saída "1/3". Se tivermos "0,4", que necessidade de saída "2/5".

É errado no caso comum, por causa de 1/3 = 0,3333333 = 0. (3) Além disso, é impossível descobrir a partir sugerido acima soluções é decimal pode ser convertido para fração com precisão definida, porque a saída é sempre fração.

Mas, eu sugiro minha função abrangente com muitas opções com base na ideia de infinita série geométrica , especificamente na fórmula:

enter descrição da imagem aqui

No começo essa função é tentar encontrar período de fração em representação de cadeia. Após o descrito acima é aplicada fórmula.

código

números racionais é emprestado de Stephen M. McKamey racional números implementação em C #. Espero que não é muito difícil de porta de meu código em outros idiomas.

/// <summary>
/// Convert decimal to fraction
/// </summary>
/// <param name="value">decimal value to convert</param>
/// <param name="result">result fraction if conversation is succsess</param>
/// <param name="decimalPlaces">precision of considereation frac part of value</param>
/// <param name="trimZeroes">trim zeroes on the right part of the value or not</param>
/// <param name="minPeriodRepeat">minimum period repeating</param>
/// <param name="digitsForReal">precision for determination value to real if period has not been founded</param>
/// <returns></returns>
public static bool FromDecimal(decimal value, out Rational<T> result, 
    int decimalPlaces = 28, bool trimZeroes = false, decimal minPeriodRepeat = 2, int digitsForReal = 9)
{
    var valueStr = value.ToString("0.0000000000000000000000000000", CultureInfo.InvariantCulture);
    var strs = valueStr.Split('.');

    long intPart = long.Parse(strs[0]);
    string fracPartTrimEnd = strs[1].TrimEnd(new char[] { '0' });
    string fracPart;

    if (trimZeroes)
    {
        fracPart = fracPartTrimEnd;
        decimalPlaces = Math.Min(decimalPlaces, fracPart.Length);
    }
    else
        fracPart = strs[1];

    result = new Rational<T>();
    try
    {
        string periodPart;
        bool periodFound = false;

        int i;
        for (i = 0; i < fracPart.Length; i++)
        {
            if (fracPart[i] == '0' && i != 0)
                continue;

            for (int j = i + 1; j < fracPart.Length; j++)
            {
                periodPart = fracPart.Substring(i, j - i);
                periodFound = true;
                decimal periodRepeat = 1;
                decimal periodStep = 1.0m / periodPart.Length;
                var upperBound = Math.Min(fracPart.Length, decimalPlaces);
                int k;
                for (k = i + periodPart.Length; k < upperBound; k += 1)
                {
                    if (periodPart[(k - i) % periodPart.Length] != fracPart[k])
                    {
                        periodFound = false;
                        break;
                    }
                    periodRepeat += periodStep;
                }

                if (!periodFound && upperBound - k <= periodPart.Length && periodPart[(upperBound - i) % periodPart.Length] > '5')
                {
                    var ind = (k - i) % periodPart.Length;
                    var regroupedPeriod = (periodPart.Substring(ind) + periodPart.Remove(ind)).Substring(0, upperBound - k);
                    ulong periodTailPlusOne = ulong.Parse(regroupedPeriod) + 1;
                    ulong fracTail = ulong.Parse(fracPart.Substring(k, regroupedPeriod.Length));
                    if (periodTailPlusOne == fracTail)
                        periodFound = true;
                }

                if (periodFound && periodRepeat >= minPeriodRepeat)
                {
                    result = FromDecimal(strs[0], fracPart.Substring(0, i), periodPart);
                    break;
                }
                else
                    periodFound = false;
            }

            if (periodFound)
                break;
        }

        if (!periodFound)
        {
            if (fracPartTrimEnd.Length >= digitsForReal)
                return false;
            else
            {
                result = new Rational<T>(long.Parse(strs[0]), 1, false);
                if (fracPartTrimEnd.Length != 0)
                    result = new Rational<T>(ulong.Parse(fracPartTrimEnd), TenInPower(fracPartTrimEnd.Length));
                return true;
            }
        }

        return true;
    }
    catch
    {
        return false;
    }
}

public static Rational<T> FromDecimal(string intPart, string fracPart, string periodPart)
{
    Rational<T> firstFracPart;
    if (fracPart != null && fracPart.Length != 0)
    {
        ulong denominator = TenInPower(fracPart.Length);
        firstFracPart = new Rational<T>(ulong.Parse(fracPart), denominator);
    }
    else
        firstFracPart = new Rational<T>(0, 1, false);

    Rational<T> secondFracPart;
    if (periodPart != null && periodPart.Length != 0)
        secondFracPart =
            new Rational<T>(ulong.Parse(periodPart), TenInPower(fracPart.Length)) *
            new Rational<T>(1, Nines((ulong)periodPart.Length), false);
    else
        secondFracPart = new Rational<T>(0, 1, false);

    var result = firstFracPart + secondFracPart;
    if (intPart != null && intPart.Length != 0)
    {
        long intPartLong = long.Parse(intPart);
        result = new Rational<T>(intPartLong, 1, false) + (intPartLong == 0 ? 1 : Math.Sign(intPartLong)) * result;
    }

    return result;
}

private static ulong TenInPower(int power)
{
    ulong result = 1;
    for (int l = 0; l < power; l++)
        result *= 10;
    return result;
}

private static decimal TenInNegPower(int power)
{
    decimal result = 1;
    for (int l = 0; l > power; l--)
        result /= 10.0m;
    return result;
}

private static ulong Nines(ulong power)
{
    ulong result = 9;
    if (power >= 0)
        for (ulong l = 0; l < power - 1; l++)
            result = result * 10 + 9;
    return result;
}

Existem alguns exemplos de usings:

Rational<long>.FromDecimal(0.33333333m, out r, 8, false);
// then r == 1 / 3;

Rational<long>.FromDecimal(0.33333333m, out r, 9, false);
// then r == 33333333 / 100000000;

O seu caso com a parte direita de zero parte aparar:

Rational<long>.FromDecimal(0.33m, out r, 28, true);
// then r == 1 / 3;

Rational<long>.FromDecimal(0.33m, out r, 28, true);
// then r == 33 / 100;

Min período demostration:

Rational<long>.FromDecimal(0.123412m, out r, 28, true, 1.5m));
// then r == 1234 / 9999;
Rational<long>.FromDecimal(0.123412m, out r, 28, true, 1.6m));
// then r == 123412 / 1000000; because of minimu repeating of period is 0.1234123 in this case.

Arredondamento no final:

Rational<long>.FromDecimal(0.8888888888888888888888888889m, out r));
// then r == 8 == 9;

O caso mais interessante:

Rational<long>.FromDecimal(0.12345678m, out r, 28, true, 2, 9);
// then r == 12345678 / 100000000;

Rational<long>.FromDecimal(0.12345678m, out r, 28, true, 2, 8);
// Conversation failed, because of period has not been founded and there are too many digits in fraction part of input value.

Rational<long>.FromDecimal(0.12121212121212121m, out r, 28, true, 2, 9));
// then r == 4 / 33; Despite of too many digits in input value, period has been founded. Thus it's possible to convert value to fraction.

Outros testes e código todos podem encontrar na minha biblioteca MathFunctions no github .

Aqui está uma implementação rápida e suja em javascript que usa uma abordagem de força bruta. Nem em todos otimizados, ele funciona dentro de um intervalo pré-definido de frações: http://jsfiddle.net/PdL23/1/

/* This should convert any decimals to a simplified fraction within the range specified by the two for loops. Haven't done any thorough testing, but it seems to work fine.

I have set the bounds for numerator and denominator to 20, 20... but you can increase this if you want in the two for loops.

Disclaimer: Its not at all optimized. (Feel free to create an improved version.)
*/

decimalToSimplifiedFraction = function(n) {

    for(num = 1; num < 20; num++) {  // "num" is the potential numerator
        for(den = 1; den < 20; den++) {  // "den" is the potential denominator
            var multiplyByInverse = (n * den ) / num;

            var roundingError = Math.round(multiplyByInverse) - multiplyByInverse;

            // Checking if we have found the inverse of the number, 
            if((Math.round(multiplyByInverse) == 1) && (Math.abs(roundingError) < 0.01)) {
                return num + "/" + den;
            }
        }
    }
};

//Put in your test number here.
var floatNumber = 2.56;

alert(floatNumber + " = " + decimalToSimplifiedFraction(floatNumber));

Este é inspirado pela abordagem utilizada por JPS.

Como muitas pessoas têm afirmado você realmente não pode converter uma volta ponto flutuante para uma fração (a menos que sua extremamente exato como 0,25). Claro que você pode criar algum tipo de olhar-se para uma grande variedade de frações e usar algum tipo de lógica fuzzy para produzir o resultado que você está procurando. Novamente, isto não seria exato embora e você precisa definir um limite inferior de quão grande o seu querer o denominador para ir.

0,32

Aqui é a implementação de rubi http://github.com/valodzka/frac

Math.frac(0.2, 100)  # => (1/5)
Math.frac(0.33, 10)  # => (1/3)
Math.frac(0.33, 100) # => (33/100)
scroll top