我想写一个其中有一个环,其预成型件所需的欧拉方法的操作的功能。下面我那可怜的尝试。

In[15]:= Euler[icx_,icy_,h_,b_,diffeq_] :=
curx;
cury;
n=0;
curx = icx;
cury = icy;

While
[curx != b, 

    Print["" + n + " | " + curx + cury];
    n++;

    dq = StringReplace[diffeq, "y[x]" -> curx];
    dq = StringReplace[dq, "x" -> cury];
    curx+=h;
    cury=cury+h*dq;


]


In[21]:= Euler[0, 0, .1, 1, e^-y[x]]

Out[21]= icx
有帮助吗?

解决方案

要解决欧拉方法的ODE Mathematica中的代码是:

Clear["Global`*"]; 
s = NDSolve[{y'[x] == Exp[-y[x]], y[0] == 0}, y, {x, 0, 1}, 
    Method -> {"FixedStep", Method -> "ExplicitEuler"}, 
    MaxSteps -> 20000];
Plot[Evaluate[y[x] /. s], {x, 0, 1}, PlotRange -> Full]

另外,如果你正在处理作业,请注明您的标签。

HTH!

其他提示

下面是一个没有任何显式循环的溶液的例子。

如果需要一个循环,我让你自己做。

EulerODE[f_ /; Head[f] == Function, {t0_, y0_}, t1_, n_] := 
 Module[{h = (t1 - t0)/n // N, tt, yy},
 tt[0] = t0; yy[0] = y0;
 tt[k_ /; 0 < k < n] := tt[k] = tt[k - 1] + h;
 yy[k_ /; 0 < k < n] := 
 yy[k] = yy[k - 1] + h f[tt[k - 1], yy[k - 1]];
 Table[{tt[k], yy[k]}, {k, 0, n - 1}]
 ];

ty = EulerODE[Function[{t, y}, y/t + y^2/t^2], {1, 1}, 2, 100] ;

Plot[Interpolation[ty][t], {t, 1, 2}]
许可以下: CC-BY-SA归因
不隶属于 StackOverflow
scroll top