Question

I'm trying to learn scheme via SICP. Exercise 1.3 reads as follow: Define a procedure that takes three numbers as arguments and returns the sum of the squares of the two larger numbers. Please comment on how I can improve my solution.

(define (big x y)
    (if (> x y) x y))

(define (p a b c)
    (cond ((> a b) (+ (square a) (square (big b c))))
          (else (+ (square b) (square (big a c))))))
Was it helpful?

Solution

Looks ok to me, is there anything specific you want to improve on?

You could do something like:

(define (max2 . l)
  (lambda ()
    (let ((a (apply max l)))
      (values a (apply max (remv a l))))))

(define (q a b c)
  (call-with-values (max2 a b c)
    (lambda (a b)
      (+ (* a a) (* b b)))))

(define (skip-min . l)
  (lambda ()
    (apply values (remv (apply min l) l))))

(define (p a b c)
  (call-with-values (skip-min a b c)
    (lambda (a b)
      (+ (* a a) (* b b)))))

And this (proc p) can be easily converted to handle any number of arguments.

OTHER TIPS

Using only the concepts presented at that point of the book, I would do it:

(define (square x) (* x x))

(define (sum-of-squares x y) (+ (square x) (square y)))

(define (min x y) (if (< x y) x y))

(define (max x y) (if (> x y) x y))

(define (sum-squares-2-biggest x y z)
  (sum-of-squares (max x y) (max z (min x y))))

big is called max. Use standard library functionality when it's there.

My approach is different. Rather than lots of tests, I simply add the squares of all three, then subtract the square of the smallest one.

(define (exercise1.3 a b c)
  (let ((smallest (min a b c))
        (square (lambda (x) (* x x))))
    (+ (square a) (square b) (square c) (- (square smallest)))))

Whether you prefer this approach, or a bunch of if tests, is up to you, of course.


Alternative implementation using SRFI 95:

(define (exercise1.3 . args)
  (let ((sorted (sort! args >))
        (square (lambda (x) (* x x))))
    (+ (square (car sorted)) (square (cadr sorted)))))

As above, but as a one-liner (thanks synx @ freenode #scheme); also requires SRFI 1 and SRFI 26:

(define (exercise1.3 . args)
  (apply + (map! (cut expt <> 2) (take! (sort! args >) 2))))

I did it with the following code, which uses the built-in min, max, and square procedures. They're simple enough to implement using only what's been introduced in the text up to that point.

(define (sum-of-highest-squares x y z)
   (+ (square (max x y))
      (square (max (min x y) z))))

What about something like this?

(define (p a b c)
  (if (> a b)
      (if (> b c)
          (+ (square a) (square b))
          (+ (square a) (square c)))
      (if (> a c)
          (+ (square a) (square b))
          (+ (square b) (square c)))))

Using only the concepts introduced up to that point of the text, which I think is rather important, here is a different solution:

(define (smallest-of-three a b c)
        (if (< a b)
            (if (< a c) a c)
            (if (< b c) b c)))

(define (square a)
        (* a a))

(define (sum-of-squares-largest a b c) 
        (+ (square a)
           (square b)
           (square c)
           (- (square (smallest-of-three a b c)))))
(define (sum-sqr x y)
(+ (square x) (square y)))

(define (sum-squares-2-of-3 x y z)
    (cond ((and (<= x y) (<= x z)) (sum-sqr y z))
             ((and (<= y x) (<= y z)) (sum-sqr x z))
             ((and (<= z x) (<= z y)) (sum-sqr x y))))
(define (f a b c) 
  (if (= a (min a b c)) 
      (+ (* b b) (* c c)) 
      (f b c a)))

With Scott Hoffman's and some irc help I corrected my faulty code, here it is

(define (p a b c)
    (cond ((> a b)
        (cond ((> b c)
            (+ (square a) (square b)))
            (else (+ (square a) (square c)))))
        (else
            (cond ((> a c)
                (+ (square b) (square a))))
             (+ (square b) (square c)))))

You can also sort the list and add the squares of the first and second element of the sorted list:

(require (lib "list.ss")) ;; I use PLT Scheme

(define (exercise-1-3 a b c)
  (let* [(sorted-list (sort (list a b c) >))
         (x (first sorted-list))
         (y (second sorted-list))]
    (+ (* x x) (* y y))))

Here's yet another way to do it:

#!/usr/bin/env mzscheme
#lang scheme/load

(module ex-1.3 scheme/base
  (define (ex-1.3 a b c)
    (let* ((square (lambda (x) (* x x)))
           (p (lambda (a b c) (+ (square a) (square (if (> b c) b c))))))
      (if (> a b) (p a b c) (p b a c))))

  (require scheme/contract)
  (provide/contract [ex-1.3 (-> number? number? number? number?)]))

;; tests
(module ex-1.3/test scheme/base
  (require (planet "test.ss" ("schematics" "schemeunit.plt" 2))
           (planet "text-ui.ss" ("schematics" "schemeunit.plt" 2)))
  (require 'ex-1.3)

  (test/text-ui
   (test-suite
    "ex-1.3"
    (test-equal? "1 2 3" (ex-1.3 1 2 3) 13)
    (test-equal? "2 1 3" (ex-1.3 2 1 3) 13)
    (test-equal? "2 1. 3.5" (ex-1.3 2 1. 3.5) 16.25)
    (test-equal? "-2 -10. 3.5" (ex-1.3 -2 -10. 3.5) 16.25)
    (test-exn "2+1i 0 0" exn:fail:contract? (lambda () (ex-1.3 2+1i 0 0)))
    (test-equal? "all equal" (ex-1.3 3 3 3) 18))))

(require 'ex-1.3/test)

Example:

$ mzscheme ex-1.3.ss
6 success(es) 0 failure(s) 0 error(s) 6 test(s) run
0

It's nice to see how other people have solved this problem. This was my solution:

(define (isGreater? x y z)
(if (and (> x z) (> y z))
(+ (square x) (square y))
0))

(define (sumLarger x y z)
(if (= (isGreater? x y z) 0)   
(sumLarger y z x)
(isGreater? x y z)))

I solved it by iteration, but I like ashitaka's and the (+ (square (max x y)) (square (max (min x y) z))) solutions better, since in my version, if z is the smallest number, isGreater? is called twice, creating an unnecessarily slow and circuitous procedure.

(define (sum a b) (+ a b))
(define (square a) (* a a))
(define (greater a b ) 
  ( if (< a b) b a))
(define (smaller a b ) 
  ( if (< a b) a b))
(define (sumOfSquare a b)
    (sum (square a) (square b)))
(define (sumOfSquareOfGreaterNumbers a b c)
  (sumOfSquare (greater a b) (greater (smaller a b) c)))

I've had a go:

(define (procedure a b c)
    (let ((y (sort (list a b c) >)) (square (lambda (x) (* x x))))
        (+ (square (first y)) (square(second y)))))
;exercise 1.3
(define (sum-square-of-max a b c)
  (+ (if (> a b) (* a a) (* b b))
     (if (> b c) (* b b) (* c c))))

I think this is the smallest and most efficient way:

(define (square-sum-larger a b c)
 (+ 
  (square (max a b))
  (square (max (min a b) c))))

Below is the solution that I came up with. I find it easier to reason about a solution when the code is decomposed into small functions.

            ; Exercise 1.3
(define (sum-square-largest a b c)
  (+ (square (greatest a b))
     (square (greatest (least a b) c))))

(define (greatest a b)
  (cond (( > a b) a)
    (( < a b) b)))

(define (least a b)
  (cond ((> a b) b)
    ((< a b) a)))

(define (square a)
  (* a a))
Licensed under: CC-BY-SA with attribution
Not affiliated with StackOverflow
scroll top