Domanda

Mi piacerebbe usare analisi delle componenti principali (PCA) per la riduzione dimensionalità. Fa NumPy o SciPy già averlo, o devo rotolare il mio utilizzando numpy.linalg.eigh ?

Non voglio solo usare decomposizione in valori singolari (SVD), perché i miei dati di ingresso sono piuttosto elevate dimensioni (~ 460 le dimensioni), quindi penso che SVD sarà più lento di calcolare gli autovettori della matrice di covarianza.

speravo di trovare un premade, debug applicazione che fa già le giuste decisioni per quando usare quale metodo, e che forse fa anche altre ottimizzazioni che io non conosco.

È stato utile?

Soluzione

Si potrebbe avere uno sguardo a MDP .

Non ho avuto la possibilità di provare io stesso, ma ho segnalibro esattamente per la funzionalità PCA.

Altri suggerimenti

Mesi dopo, ecco una piccola PCA di classe, e una foto:

#!/usr/bin/env python
""" a small class for Principal Component Analysis
Usage:
    p = PCA( A, fraction=0.90 )
In:
    A: an array of e.g. 1000 observations x 20 variables, 1000 rows x 20 columns
    fraction: use principal components that account for e.g.
        90 % of the total variance

Out:
    p.U, p.d, p.Vt: from numpy.linalg.svd, A = U . d . Vt
    p.dinv: 1/d or 0, see NR
    p.eigen: the eigenvalues of A*A, in decreasing order (p.d**2).
        eigen[j] / eigen.sum() is variable j's fraction of the total variance;
        look at the first few eigen[] to see how many PCs get to 90 %, 95 % ...
    p.npc: number of principal components,
        e.g. 2 if the top 2 eigenvalues are >= `fraction` of the total.
        It's ok to change this; methods use the current value.

Methods:
    The methods of class PCA transform vectors or arrays of e.g.
    20 variables, 2 principal components and 1000 observations,
    using partial matrices U' d' Vt', parts of the full U d Vt:
    A ~ U' . d' . Vt' where e.g.
        U' is 1000 x 2
        d' is diag([ d0, d1 ]), the 2 largest singular values
        Vt' is 2 x 20.  Dropping the primes,

    d . Vt      2 principal vars = p.vars_pc( 20 vars )
    U           1000 obs = p.pc_obs( 2 principal vars )
    U . d . Vt  1000 obs, p.obs( 20 vars ) = pc_obs( vars_pc( vars ))
        fast approximate A . vars, using the `npc` principal components

    Ut              2 pcs = p.obs_pc( 1000 obs )
    V . dinv        20 vars = p.pc_vars( 2 principal vars )
    V . dinv . Ut   20 vars, p.vars( 1000 obs ) = pc_vars( obs_pc( obs )),
        fast approximate Ainverse . obs: vars that give ~ those obs.


Notes:
    PCA does not center or scale A; you usually want to first
        A -= A.mean(A, axis=0)
        A /= A.std(A, axis=0)
    with the little class Center or the like, below.

See also:
    http://en.wikipedia.org/wiki/Principal_component_analysis
    http://en.wikipedia.org/wiki/Singular_value_decomposition
    Press et al., Numerical Recipes (2 or 3 ed), SVD
    PCA micro-tutorial
    iris-pca .py .png

"""

from __future__ import division
import numpy as np
dot = np.dot
    # import bz.numpyutil as nu
    # dot = nu.pdot

__version__ = "2010-04-14 apr"
__author_email__ = "denis-bz-py at t-online dot de"

#...............................................................................
class PCA:
    def __init__( self, A, fraction=0.90 ):
        assert 0 <= fraction <= 1
            # A = U . diag(d) . Vt, O( m n^2 ), lapack_lite --
        self.U, self.d, self.Vt = np.linalg.svd( A, full_matrices=False )
        assert np.all( self.d[:-1] >= self.d[1:] )  # sorted
        self.eigen = self.d**2
        self.sumvariance = np.cumsum(self.eigen)
        self.sumvariance /= self.sumvariance[-1]
        self.npc = np.searchsorted( self.sumvariance, fraction ) + 1
        self.dinv = np.array([ 1/d if d > self.d[0] * 1e-6  else 0
                                for d in self.d ])

    def pc( self ):
        """ e.g. 1000 x 2 U[:, :npc] * d[:npc], to plot etc. """
        n = self.npc
        return self.U[:, :n] * self.d[:n]

    # These 1-line methods may not be worth the bother;
    # then use U d Vt directly --

    def vars_pc( self, x ):
        n = self.npc
        return self.d[:n] * dot( self.Vt[:n], x.T ).T  # 20 vars -> 2 principal

    def pc_vars( self, p ):
        n = self.npc
        return dot( self.Vt[:n].T, (self.dinv[:n] * p).T ) .T  # 2 PC -> 20 vars

    def pc_obs( self, p ):
        n = self.npc
        return dot( self.U[:, :n], p.T )  # 2 principal -> 1000 obs

    def obs_pc( self, obs ):
        n = self.npc
        return dot( self.U[:, :n].T, obs ) .T  # 1000 obs -> 2 principal

    def obs( self, x ):
        return self.pc_obs( self.vars_pc(x) )  # 20 vars -> 2 principal -> 1000 obs

    def vars( self, obs ):
        return self.pc_vars( self.obs_pc(obs) )  # 1000 obs -> 2 principal -> 20 vars


class Center:
    """ A -= A.mean() /= A.std(), inplace -- use A.copy() if need be
        uncenter(x) == original A . x
    """
        # mttiw
    def __init__( self, A, axis=0, scale=True, verbose=1 ):
        self.mean = A.mean(axis=axis)
        if verbose:
            print "Center -= A.mean:", self.mean
        A -= self.mean
        if scale:
            std = A.std(axis=axis)
            self.std = np.where( std, std, 1. )
            if verbose:
                print "Center /= A.std:", self.std
            A /= self.std
        else:
            self.std = np.ones( A.shape[-1] )
        self.A = A

    def uncenter( self, x ):
        return np.dot( self.A, x * self.std ) + np.dot( x, self.mean )


#...............................................................................
if __name__ == "__main__":
    import sys

    csv = "iris4.csv"  # wikipedia Iris_flower_data_set
        # 5.1,3.5,1.4,0.2  # ,Iris-setosa ...
    N = 1000
    K = 20
    fraction = .90
    seed = 1
    exec "\n".join( sys.argv[1:] )  # N= ...
    np.random.seed(seed)
    np.set_printoptions( 1, threshold=100, suppress=True )  # .1f
    try:
        A = np.genfromtxt( csv, delimiter="," )
        N, K = A.shape
    except IOError:
        A = np.random.normal( size=(N, K) )  # gen correlated ?

    print "csv: %s  N: %d  K: %d  fraction: %.2g" % (csv, N, K, fraction)
    Center(A)
    print "A:", A

    print "PCA ..." ,
    p = PCA( A, fraction=fraction )
    print "npc:", p.npc
    print "% variance:", p.sumvariance * 100

    print "Vt[0], weights that give PC 0:", p.Vt[0]
    print "A . Vt[0]:", dot( A, p.Vt[0] )
    print "pc:", p.pc()

    print "\nobs <-> pc <-> x: with fraction=1, diffs should be ~ 0"
    x = np.ones(K)
    # x = np.ones(( 3, K ))
    print "x:", x
    pc = p.vars_pc(x)  # d' Vt' x
    print "vars_pc(x):", pc
    print "back to ~ x:", p.pc_vars(pc)

    Ax = dot( A, x.T )
    pcx = p.obs(x)  # U' d' Vt' x
    print "Ax:", Ax
    print "A'x:", pcx
    print "max |Ax - A'x|: %.2g" % np.linalg.norm( Ax - pcx, np.inf )

    b = Ax  # ~ back to original x, Ainv A x
    back = p.vars(b)
    print "~ back again:", back
    print "max |back - x|: %.2g" % np.linalg.norm( back - x, np.inf )

# end pca.py

entrare descrizione dell'immagine qui

PCA utilizzando numpy.linalg.svd è super facile. Ecco un semplice demo:

import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import lena

# the underlying signal is a sinusoidally modulated image
img = lena()
t = np.arange(100)
time = np.sin(0.1*t)
real = time[:,np.newaxis,np.newaxis] * img[np.newaxis,...]

# we add some noise
noisy = real + np.random.randn(*real.shape)*255

# (observations, features) matrix
M = noisy.reshape(noisy.shape[0],-1)

# singular value decomposition factorises your data matrix such that:
# 
#   M = U*S*V.T     (where '*' is matrix multiplication)
# 
# * U and V are the singular matrices, containing orthogonal vectors of
#   unit length in their rows and columns respectively.
#
# * S is a diagonal matrix containing the singular values of M - these 
#   values squared divided by the number of observations will give the 
#   variance explained by each PC.
#
# * if M is considered to be an (observations, features) matrix, the PCs
#   themselves would correspond to the rows of S^(1/2)*V.T. if M is 
#   (features, observations) then the PCs would be the columns of
#   U*S^(1/2).
#
# * since U and V both contain orthonormal vectors, U*V.T is equivalent 
#   to a whitened version of M.

U, s, Vt = np.linalg.svd(M, full_matrices=False)
V = Vt.T

# PCs are already sorted by descending order 
# of the singular values (i.e. by the
# proportion of total variance they explain)

# if we use all of the PCs we can reconstruct the noisy signal perfectly
S = np.diag(s)
Mhat = np.dot(U, np.dot(S, V.T))
print "Using all PCs, MSE = %.6G" %(np.mean((M - Mhat)**2))

# if we use only the first 20 PCs the reconstruction is less accurate
Mhat2 = np.dot(U[:, :20], np.dot(S[:20, :20], V[:,:20].T))
print "Using first 20 PCs, MSE = %.6G" %(np.mean((M - Mhat2)**2))

fig, [ax1, ax2, ax3] = plt.subplots(1, 3)
ax1.imshow(img)
ax1.set_title('true image')
ax2.imshow(noisy.mean(0))
ax2.set_title('mean of noisy images')
ax3.imshow((s[0]**(1./2) * V[:,0]).reshape(img.shape))
ax3.set_title('first spatial PC')
plt.show()

È possibile utilizzare sklearn:

import sklearn.decomposition as deco
import numpy as np

x = (x - np.mean(x, 0)) / np.std(x, 0) # You need to normalize your data first
pca = deco.PCA(n_components) # n_components is the components number after reduction
x_r = pca.fit(x).transform(x)
print ('explained variance (first %d components): %.2f'%(n_components, sum(pca.explained_variance_ratio_)))

SVD dovrebbe funzionare bene con 460 dimensioni. Ci vogliono circa 7 secondi sul mio netbook Atom. Il metodo eig () impiega più tempo (come dovrebbe, si utilizza più operazioni in virgola mobile) e sarà quasi sempre meno precise.

Se hai meno di 460 esempi, allora ciò che si vuole fare è diagonalizzare la matrice di dispersione (x - datamean) ^ T (x - media), supposto che i tuoi punti di dati sono colonne, e poi a sinistra-moltiplicando per (x - datamean). Quella potrebbe essere più veloce nel caso in cui si ha più dimensioni di dati.

Si può facilmente "roll" il proprio utilizzando scipy.linalg (assumendo un pre-centrato data dataset):

covmat = data.dot(data.T)
evs, evmat = scipy.linalg.eig(covmat)

Poi evs sono i vostri autovalori, e evmat è la vostra matrice di proiezione.

Se si desidera mantenere le dimensioni d, utilizzare i primi autovalori d e primi autovettori d.

Dato che scipy.linalg ha la decomposizione e NumPy i moltiplicazione di matrici, cos'altro avete bisogno?

Ho appena finito di leggere il libro Machine Learning: una prospettiva algoritmico . Tutti gli esempi di codice del libro è stato scritto da Python (e quasi con Numpy). Il frammento di codice di chatper10.2 Analisi delle Componenti Principali forse vale la pena una lettura. Si usa numpy.linalg.eig.
Tra l'altro, penso che SVD in grado di gestire 460 * 460 dimensioni molto bene. Ho calcolare un 6500 * 6500 SVD con NumPy / scipy.linalg.svd su un vecchio PC: Pentium III 733MHz. Per essere onesti, lo script ha bisogno di una grande quantità di memoria (circa 1.xG) e un sacco di tempo (circa 30 minuti) per ottenere il risultato SVD. Ma penso che 460 * 460 su un PC moderno non sarà un grosso problema a meno che u bisogno di fare SVD un enorme numero di volte.

Non hai bisogno di piena Singular Value Decomposition (SVD) a calcola tutti autovalori e autovettori e può essere proibitivo per le grandi matrici. SciPy e il suo modulo sparse forniscono funzioni generiche algrebra lineare lavorano su entrambi matrici sparse e densi, tra i quali v'è la eig * famiglia di funzioni:

http://docs.scipy.org/ / sparse.linalg.html # matrix-fattorizzazioni doc / SciPy / riferimento

scikit-learn offre invece una Python PCA implementazione che supportano solo le matrici dense per ora.

Tempi:

In [1]: A = np.random.randn(1000, 1000)

In [2]: %timeit scipy.sparse.linalg.eigsh(A)
1 loops, best of 3: 802 ms per loop

In [3]: %timeit np.linalg.svd(A)
1 loops, best of 3: 5.91 s per loop

Qui è un'altra implementazione di un modulo PCA per Python usando NumPy, SciPy e C -extensions. Il modulo esegue PCA utilizzando uno SVD o le NIPALS (Nonlinear Iterative Partial Least Squares) algoritmo che è attuato nel C.

Se si lavora con vettori 3D, è possibile applicare SVD conciso con il cappello in vg . Si tratta di un leggero strato sulla parte superiore del NumPy.

import numpy as np
import vg

vg.principal_components(data)

C'è anche un alias conveniente se desideri solo la prima componente principale:

vg.major_axis(data)

Ho creato la biblioteca al mio ultimo avvio, dove è stata motivata da usi in questo modo:. Idee semplici che sono prolisso o opaco in NumPy

Autorizzato sotto: CC-BY-SA insieme a attribuzione
Non affiliato a StackOverflow
scroll top