Schnellster Weg, um den Satz von konvexen Polygonen durch Voronoi Liniensegmente gebildet zu erhalten

StackOverflow https://stackoverflow.com/questions/2346148

Frage

habe ich Fortune Algorithmus die Voronoidiagramm einer Reihe von Punkten zu finden. Was ich zurück ist eine Liste der Liniensegmente, aber ich muss wissen, welche Segmente geschlossene Polygone bilden, und setzen sie zusammen in einem Objekt von dem ursprünglichen Punkt gehasht sie umgeben.

Was könnte der schnellste Weg sein, diese zu finden ?? Soll ich sparte etwas wichtigen Informationen aus dem Algorithmus? Wenn ja, was?

Hier ist meine Implementierung des Algorithmus Vermögen in Java aus einer C ++ portiert Implementierung hier

class Voronoi {

// The set of points that control the centers of the cells
private LinkedList<Point> pts;
// A list of line segments that defines where the cells are divided
private LinkedList<Edge> output;
// The sites that have not yet been processed, in acending order of X coordinate
private PriorityQueue sites;
// Possible upcoming cirlce events in acending order of X coordinate
private PriorityQueue events;
// The root of the binary search tree of the parabolic wave front
private Arc root;

void runFortune(LinkedList pts) {

    sites.clear();
    events.clear();
    output.clear();
    root = null;

    Point p;
    ListIterator i = pts.listIterator(0);
    while (i.hasNext()) {
        sites.offer(i.next());
    }

    // Process the queues; select the top element with smaller x coordinate.
    while (sites.size() > 0) {
        if ((events.size() > 0) && ((((CircleEvent) events.peek()).xpos) <= (((Point) sites.peek()).x))) {
            processCircleEvent((CircleEvent) events.poll());
        } else {
            //process a site event by adding a curve to the parabolic front
            frontInsert((Point) sites.poll());
        }
    }

    // After all points are processed, do the remaining circle events.
    while (events.size() > 0) {
        processCircleEvent((CircleEvent) events.poll());
    }

    // Clean up dangling edges.
    finishEdges();

}

private void processCircleEvent(CircleEvent event) {
    if (event.valid) {
        //start a new edge
        Edge edgy = new Edge(event.p);

        // Remove the associated arc from the front.
        Arc parc = event.a;
        if (parc.prev != null) {
            parc.prev.next = parc.next;
            parc.prev.edge1 = edgy;
        }
        if (parc.next != null) {
            parc.next.prev = parc.prev;
            parc.next.edge0 = edgy;
        }

        // Finish the edges before and after this arc.
        if (parc.edge0 != null) {
            parc.edge0.finish(event.p);
        }
        if (parc.edge1 != null) {
            parc.edge1.finish(event.p);
        }

        // Recheck circle events on either side of p:
        if (parc.prev != null) {
            checkCircleEvent(parc.prev, event.xpos);
        }
        if (parc.next != null) {
            checkCircleEvent(parc.next, event.xpos);
        }

    }
}

void frontInsert(Point focus) {
    if (root == null) {
        root = new Arc(focus);
        return;
    }

    Arc parc = root;
    while (parc != null) {
        CircleResultPack rez = intersect(focus, parc);
        if (rez.valid) {
            // New parabola intersects parc.  If necessary, duplicate parc.

            if (parc.next != null) {
                CircleResultPack rezz = intersect(focus, parc.next);
                if (!rezz.valid){
                    Arc bla = new Arc(parc.focus);
                    bla.prev = parc;
                    bla.next = parc.next;
                    parc.next.prev = bla;
                    parc.next = bla;
                }
            } else {
                parc.next = new Arc(parc.focus);
                parc.next.prev = parc;
            }
            parc.next.edge1 = parc.edge1;

            // Add new arc between parc and parc.next.
            Arc bla = new Arc(focus);
            bla.prev = parc;
            bla.next = parc.next;
            parc.next.prev = bla;
            parc.next = bla;

            parc = parc.next; // Now parc points to the new arc.

            // Add new half-edges connected to parc's endpoints.
            parc.edge0 = new Edge(rez.center);
            parc.prev.edge1 = parc.edge0;
            parc.edge1 = new Edge(rez.center);
            parc.next.edge0 = parc.edge1;

            // Check for new circle events around the new arc:
            checkCircleEvent(parc, focus.x);
            checkCircleEvent(parc.prev, focus.x);
            checkCircleEvent(parc.next, focus.x);

            return;
        }

        //proceed to next arc
        parc = parc.next;
    }

    // Special case: If p never intersects an arc, append it to the list.
    parc = root;
    while (parc.next != null) {
        parc = parc.next; // Find the last node.
    }
    parc.next = new Arc(focus);
    parc.next.prev = parc;
    Point start = new Point(0, (parc.next.focus.y + parc.focus.y) / 2);
    parc.next.edge0 = new Edge(start);
    parc.edge1 = parc.next.edge0;

}

void checkCircleEvent(Arc parc, double xpos) {
    // Invalidate any old event.
    if ((parc.event != null) && (parc.event.xpos != xpos)) {
        parc.event.valid = false;
    }
    parc.event = null;

    if ((parc.prev == null) || (parc.next == null)) {
        return;
    }

    CircleResultPack result = circle(parc.prev.focus, parc.focus, parc.next.focus);
    if (result.valid && result.rightmostX > xpos) {
        // Create new event.
        parc.event = new CircleEvent(result.rightmostX, result.center, parc);
        events.offer(parc.event);
    }

}

// Find the rightmost point on the circle through a,b,c.
CircleResultPack circle(Point a, Point b, Point c) {
    CircleResultPack result = new CircleResultPack();

    // Check that bc is a "right turn" from ab.
    if ((b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y) > 0) {
        result.valid = false;
        return result;
    }

    // Algorithm from O'Rourke 2ed p. 189.
    double A = b.x - a.x;
    double B = b.y - a.y;
    double C = c.x - a.x;
    double D = c.y - a.y;
    double E = A * (a.x + b.x) + B * (a.y + b.y);
    double F = C * (a.x + c.x) + D * (a.y + c.y);
    double G = 2 * (A * (c.y - b.y) - B * (c.x - b.x));

    if (G == 0) { // Points are co-linear.
        result.valid = false;
        return result;
    }

    // centerpoint of the circle.
    Point o = new Point((D * E - B * F) / G, (A * F - C * E) / G);
    result.center = o;

    // o.x plus radius equals max x coordinate.
    result.rightmostX = o.x + Math.sqrt(Math.pow(a.x - o.x, 2.0) + Math.pow(a.y - o.y, 2.0));

    result.valid = true;
    return result;
}

// Will a new parabola at point p intersect with arc i?
CircleResultPack intersect(Point p, Arc i) {
    CircleResultPack res = new CircleResultPack();
    res.valid = false;
    if (i.focus.x == p.x) {
        return res;
    }

    double a = 0.0;
    double b = 0.0;
    if (i.prev != null) // Get the intersection of i->prev, i.
    {
        a = intersection(i.prev.focus, i.focus, p.x).y;
    }
    if (i.next != null) // Get the intersection of i->next, i.
    {
        b = intersection(i.focus, i.next.focus, p.x).y;
    }

    if ((i.prev == null || a <= p.y) && (i.next == null || p.y <= b)) {
        res.center = new Point(0, p.y);

        // Plug it back into the parabola equation to get the x coordinate
        res.center.x = (i.focus.x * i.focus.x + (i.focus.y - res.center.y) * (i.focus.y - res.center.y) - p.x * p.x) / (2 * i.focus.x - 2 * p.x);

        res.valid = true;
        return res;
    }
    return res;
}

// Where do two parabolas intersect?
Point intersection(Point p0, Point p1, double l) {
    Point res = new Point(0, 0);
    Point p = p0;

    if (p0.x == p1.x) {
        res.y = (p0.y + p1.y) / 2;
    } else if (p1.x == l) {
        res.y = p1.y;
    } else if (p0.x == l) {
        res.y = p0.y;
        p = p1;
    } else {
        // Use the quadratic formula.
        double z0 = 2 * (p0.x - l);
        double z1 = 2 * (p1.x - l);

        double a = 1 / z0 - 1 / z1;
        double b = -2 * (p0.y / z0 - p1.y / z1);
        double c = (p0.y * p0.y + p0.x * p0.x - l * l) / z0 - (p1.y * p1.y + p1.x * p1.x - l * l) / z1;

        res.y = (-b - Math.sqrt((b * b - 4 * a * c))) / (2 * a);
    }
    // Plug back into one of the parabola equations.
    res.x = (p.x * p.x + (p.y - res.y) * (p.y - res.y) - l * l) / (2 * p.x - 2 * l);
    return res;
}

void finishEdges() {
    // Advance the sweep line so no parabolas can cross the bounding box.
    double l = gfx.width * 2 + gfx.height;

    // Extend each remaining segment to the new parabola intersections.
    Arc i = root;
    while (i != null) {
        if (i.edge1 != null) {
            i.edge1.finish(intersection(i.focus, i.next.focus, l * 2));
        }
        i = i.next;
    }
}

class Point implements Comparable<Point> {

    public double x, y;
    //public Point goal;

    public Point(double X, double Y) {
        x = X;
        y = Y;
    }

    public int compareTo(Point foo) {
        return ((Double) this.x).compareTo((Double) foo.x);
    }
}

class CircleEvent implements Comparable<CircleEvent> {

    public double xpos;
    public Point p;
    public Arc a;
    public boolean valid;

    public CircleEvent(double X, Point P, Arc A) {
        xpos = X;
        a = A;
        p = P;
        valid = true;
    }

    public int compareTo(CircleEvent foo) {
        return ((Double) this.xpos).compareTo((Double) foo.xpos);
    }
}

class Edge {

    public Point start, end;
    public boolean done;

    public Edge(Point p) {
        start = p;
        end = new Point(0, 0);
        done = false;
        output.add(this);
    }

    public void finish(Point p) {
        if (done) {
            return;
        }
        end = p;
        done = true;
    }
}

class Arc {
    //parabolic arc is the set of points eqadistant from a focus point and the beach line

    public Point focus;
    //these object exsit in a linked list
    public Arc next, prev;
    //
    public CircleEvent event;
    //
    public Edge edge0, edge1;

    public Arc(Point p) {
        focus = p;
        next = null;
        prev = null;
        event = null;
        edge0 = null;
        edge1 = null;
    }
}

class CircleResultPack {
    // stupid Java doesnt let me return multiple variables without doing this

    public boolean valid;
    public Point center;
    public double rightmostX;
}
}

(Ich weiß, es wird nicht kompilieren, die Datenstrukturen initialisiert werden müssen, und die fehlenden Importe)

Was ich will, ist dies:

LinkedList<Poly> polys;
//contains all polygons created by Voronoi edges

class Poly {
    //defines a single polygon
    public Point locus;
    public LinkedList<Points> verts;
}

Die unmittelbarste Brute-Force-Art, wie ich mir vorstellen kann, dies zu tun, ist ein ungerichteter Graph der Punkte in dem Diagramm zu erstellen (die Endpunkte der Kanten), mit einem einzigen Eintrag für jeden Punkt, und eine einzige Verbindung für jeden Kante zwischen einem Punkt (keine Duplikate), dann gehen alle Schleifen in diesem Diagramm finden, dann für jeden Satz von Schleifen, die Aktie 3 oder mehr Punkte, werfen alles weg, aber die kürzeste Schleife. Allerdings würde auf diese Weise zu langsam.

War es hilfreich?

Lösung

Das duale das Voronoidiagramm ist die Delaunay-Triangulation. Das bedeutet jede Ecke auf dem Voroni Diagramm ist mit drei Kanten verbunden - jede Ecke Bedeutung zu drei Regionen gehört

.

Mein Algorithmus dies wäre die Verwendung:

for each vertex in Voronoi Diagram
    for each segment next to this point
       "walk around the perimeter" (just keep going counter-clockwise)
                     until you get back to the starting vertex

Das sollte O(N) sein, da es nur drei Segmente für jeden Vertex ist. Sie müssen auch einige Buchhaltung tun, um sicherzustellen, Sie tun nicht die gleiche Region zweimal (eine einfache Art und Weise ist, einfach für jeden abgehenden Rand einen Bool zu halten, und wie du gehst, es weg markieren) und unter Berücksichtigung der den Punkt zu halten im Unendlichen, soll aber die Idee genug sein.

Lizenziert unter: CC-BY-SA mit Zuschreibung
Nicht verbunden mit StackOverflow
scroll top