Самый быстрый способ получить набор выпуклых многоугольников, образованных отрезками линии Вороного

StackOverflow https://stackoverflow.com/questions/2346148

Вопрос

Я использовал алгоритм Форчуна, чтобы найти диаграмму Вороного из набора точек.То, что я получаю обратно, - это список линейных сегментов, но мне нужно знать, какие сегменты образуют замкнутые полигоны, и объединить их в объект, хэшированный исходной точкой, которую они окружают.

Какой может быть самый быстрый способ найти их??Должен ли я сохранить какую-то важную информацию из алгоритма?Если да, то что?

Вот моя реализация алгоритма fortune на Java, перенесенная из реализации на C ++ здесь

class Voronoi {

// The set of points that control the centers of the cells
private LinkedList<Point> pts;
// A list of line segments that defines where the cells are divided
private LinkedList<Edge> output;
// The sites that have not yet been processed, in acending order of X coordinate
private PriorityQueue sites;
// Possible upcoming cirlce events in acending order of X coordinate
private PriorityQueue events;
// The root of the binary search tree of the parabolic wave front
private Arc root;

void runFortune(LinkedList pts) {

    sites.clear();
    events.clear();
    output.clear();
    root = null;

    Point p;
    ListIterator i = pts.listIterator(0);
    while (i.hasNext()) {
        sites.offer(i.next());
    }

    // Process the queues; select the top element with smaller x coordinate.
    while (sites.size() > 0) {
        if ((events.size() > 0) && ((((CircleEvent) events.peek()).xpos) <= (((Point) sites.peek()).x))) {
            processCircleEvent((CircleEvent) events.poll());
        } else {
            //process a site event by adding a curve to the parabolic front
            frontInsert((Point) sites.poll());
        }
    }

    // After all points are processed, do the remaining circle events.
    while (events.size() > 0) {
        processCircleEvent((CircleEvent) events.poll());
    }

    // Clean up dangling edges.
    finishEdges();

}

private void processCircleEvent(CircleEvent event) {
    if (event.valid) {
        //start a new edge
        Edge edgy = new Edge(event.p);

        // Remove the associated arc from the front.
        Arc parc = event.a;
        if (parc.prev != null) {
            parc.prev.next = parc.next;
            parc.prev.edge1 = edgy;
        }
        if (parc.next != null) {
            parc.next.prev = parc.prev;
            parc.next.edge0 = edgy;
        }

        // Finish the edges before and after this arc.
        if (parc.edge0 != null) {
            parc.edge0.finish(event.p);
        }
        if (parc.edge1 != null) {
            parc.edge1.finish(event.p);
        }

        // Recheck circle events on either side of p:
        if (parc.prev != null) {
            checkCircleEvent(parc.prev, event.xpos);
        }
        if (parc.next != null) {
            checkCircleEvent(parc.next, event.xpos);
        }

    }
}

void frontInsert(Point focus) {
    if (root == null) {
        root = new Arc(focus);
        return;
    }

    Arc parc = root;
    while (parc != null) {
        CircleResultPack rez = intersect(focus, parc);
        if (rez.valid) {
            // New parabola intersects parc.  If necessary, duplicate parc.

            if (parc.next != null) {
                CircleResultPack rezz = intersect(focus, parc.next);
                if (!rezz.valid){
                    Arc bla = new Arc(parc.focus);
                    bla.prev = parc;
                    bla.next = parc.next;
                    parc.next.prev = bla;
                    parc.next = bla;
                }
            } else {
                parc.next = new Arc(parc.focus);
                parc.next.prev = parc;
            }
            parc.next.edge1 = parc.edge1;

            // Add new arc between parc and parc.next.
            Arc bla = new Arc(focus);
            bla.prev = parc;
            bla.next = parc.next;
            parc.next.prev = bla;
            parc.next = bla;

            parc = parc.next; // Now parc points to the new arc.

            // Add new half-edges connected to parc's endpoints.
            parc.edge0 = new Edge(rez.center);
            parc.prev.edge1 = parc.edge0;
            parc.edge1 = new Edge(rez.center);
            parc.next.edge0 = parc.edge1;

            // Check for new circle events around the new arc:
            checkCircleEvent(parc, focus.x);
            checkCircleEvent(parc.prev, focus.x);
            checkCircleEvent(parc.next, focus.x);

            return;
        }

        //proceed to next arc
        parc = parc.next;
    }

    // Special case: If p never intersects an arc, append it to the list.
    parc = root;
    while (parc.next != null) {
        parc = parc.next; // Find the last node.
    }
    parc.next = new Arc(focus);
    parc.next.prev = parc;
    Point start = new Point(0, (parc.next.focus.y + parc.focus.y) / 2);
    parc.next.edge0 = new Edge(start);
    parc.edge1 = parc.next.edge0;

}

void checkCircleEvent(Arc parc, double xpos) {
    // Invalidate any old event.
    if ((parc.event != null) && (parc.event.xpos != xpos)) {
        parc.event.valid = false;
    }
    parc.event = null;

    if ((parc.prev == null) || (parc.next == null)) {
        return;
    }

    CircleResultPack result = circle(parc.prev.focus, parc.focus, parc.next.focus);
    if (result.valid && result.rightmostX > xpos) {
        // Create new event.
        parc.event = new CircleEvent(result.rightmostX, result.center, parc);
        events.offer(parc.event);
    }

}

// Find the rightmost point on the circle through a,b,c.
CircleResultPack circle(Point a, Point b, Point c) {
    CircleResultPack result = new CircleResultPack();

    // Check that bc is a "right turn" from ab.
    if ((b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y) > 0) {
        result.valid = false;
        return result;
    }

    // Algorithm from O'Rourke 2ed p. 189.
    double A = b.x - a.x;
    double B = b.y - a.y;
    double C = c.x - a.x;
    double D = c.y - a.y;
    double E = A * (a.x + b.x) + B * (a.y + b.y);
    double F = C * (a.x + c.x) + D * (a.y + c.y);
    double G = 2 * (A * (c.y - b.y) - B * (c.x - b.x));

    if (G == 0) { // Points are co-linear.
        result.valid = false;
        return result;
    }

    // centerpoint of the circle.
    Point o = new Point((D * E - B * F) / G, (A * F - C * E) / G);
    result.center = o;

    // o.x plus radius equals max x coordinate.
    result.rightmostX = o.x + Math.sqrt(Math.pow(a.x - o.x, 2.0) + Math.pow(a.y - o.y, 2.0));

    result.valid = true;
    return result;
}

// Will a new parabola at point p intersect with arc i?
CircleResultPack intersect(Point p, Arc i) {
    CircleResultPack res = new CircleResultPack();
    res.valid = false;
    if (i.focus.x == p.x) {
        return res;
    }

    double a = 0.0;
    double b = 0.0;
    if (i.prev != null) // Get the intersection of i->prev, i.
    {
        a = intersection(i.prev.focus, i.focus, p.x).y;
    }
    if (i.next != null) // Get the intersection of i->next, i.
    {
        b = intersection(i.focus, i.next.focus, p.x).y;
    }

    if ((i.prev == null || a <= p.y) && (i.next == null || p.y <= b)) {
        res.center = new Point(0, p.y);

        // Plug it back into the parabola equation to get the x coordinate
        res.center.x = (i.focus.x * i.focus.x + (i.focus.y - res.center.y) * (i.focus.y - res.center.y) - p.x * p.x) / (2 * i.focus.x - 2 * p.x);

        res.valid = true;
        return res;
    }
    return res;
}

// Where do two parabolas intersect?
Point intersection(Point p0, Point p1, double l) {
    Point res = new Point(0, 0);
    Point p = p0;

    if (p0.x == p1.x) {
        res.y = (p0.y + p1.y) / 2;
    } else if (p1.x == l) {
        res.y = p1.y;
    } else if (p0.x == l) {
        res.y = p0.y;
        p = p1;
    } else {
        // Use the quadratic formula.
        double z0 = 2 * (p0.x - l);
        double z1 = 2 * (p1.x - l);

        double a = 1 / z0 - 1 / z1;
        double b = -2 * (p0.y / z0 - p1.y / z1);
        double c = (p0.y * p0.y + p0.x * p0.x - l * l) / z0 - (p1.y * p1.y + p1.x * p1.x - l * l) / z1;

        res.y = (-b - Math.sqrt((b * b - 4 * a * c))) / (2 * a);
    }
    // Plug back into one of the parabola equations.
    res.x = (p.x * p.x + (p.y - res.y) * (p.y - res.y) - l * l) / (2 * p.x - 2 * l);
    return res;
}

void finishEdges() {
    // Advance the sweep line so no parabolas can cross the bounding box.
    double l = gfx.width * 2 + gfx.height;

    // Extend each remaining segment to the new parabola intersections.
    Arc i = root;
    while (i != null) {
        if (i.edge1 != null) {
            i.edge1.finish(intersection(i.focus, i.next.focus, l * 2));
        }
        i = i.next;
    }
}

class Point implements Comparable<Point> {

    public double x, y;
    //public Point goal;

    public Point(double X, double Y) {
        x = X;
        y = Y;
    }

    public int compareTo(Point foo) {
        return ((Double) this.x).compareTo((Double) foo.x);
    }
}

class CircleEvent implements Comparable<CircleEvent> {

    public double xpos;
    public Point p;
    public Arc a;
    public boolean valid;

    public CircleEvent(double X, Point P, Arc A) {
        xpos = X;
        a = A;
        p = P;
        valid = true;
    }

    public int compareTo(CircleEvent foo) {
        return ((Double) this.xpos).compareTo((Double) foo.xpos);
    }
}

class Edge {

    public Point start, end;
    public boolean done;

    public Edge(Point p) {
        start = p;
        end = new Point(0, 0);
        done = false;
        output.add(this);
    }

    public void finish(Point p) {
        if (done) {
            return;
        }
        end = p;
        done = true;
    }
}

class Arc {
    //parabolic arc is the set of points eqadistant from a focus point and the beach line

    public Point focus;
    //these object exsit in a linked list
    public Arc next, prev;
    //
    public CircleEvent event;
    //
    public Edge edge0, edge1;

    public Arc(Point p) {
        focus = p;
        next = null;
        prev = null;
        event = null;
        edge0 = null;
        edge1 = null;
    }
}

class CircleResultPack {
    // stupid Java doesnt let me return multiple variables without doing this

    public boolean valid;
    public Point center;
    public double rightmostX;
}
}

(Я знаю, что он не будет компилироваться, структуры данных должны быть инициализированы, и его недостающий импорт)

Чего я хочу, так это этого:

LinkedList<Poly> polys;
//contains all polygons created by Voronoi edges

class Poly {
    //defines a single polygon
    public Point locus;
    public LinkedList<Points> verts;
}

Самый непосредственный способ грубой силы, который я могу придумать для этого, - создать неориентированный график точек на диаграмме (конечных точек ребер) с одной записью для каждой точки и одним соединением для каждого ребра между точками (без дубликатов), затем найдите все циклы на этом графике, затем для каждого набора циклов, которые разделяют 3 или более точек, выбросьте все, кроме кратчайшего цикла.Однако это было бы слишком медленно.

Это было полезно?

Решение

Двойственной диаграммой Вороного является триангуляция Делоне.Это означает, что каждая вершина на диаграмме Ворони соединена с тремя ребрами - это означает, что каждая вершина принадлежит трем областям.

Мой алгоритм для использования этого был бы следующим:

for each vertex in Voronoi Diagram
    for each segment next to this point
       "walk around the perimeter" (just keep going counter-clockwise)
                     until you get back to the starting vertex

Это должно быть O(N) поскольку для каждой вершины имеется только 3 сегмента.Вам также нужно провести некоторую бухгалтерию, чтобы убедиться, что вы не повторяете одну и ту же область дважды (простой способ - просто сохранить bool для каждого исходящего ребра и по мере прохождения отмечать его), и помнить о точке в бесконечности, но идеи должно быть достаточно.

Лицензировано под: CC-BY-SA с атрибуция
Не связан с StackOverflow
scroll top